摘要:密码认证是最广泛使用的认证技术,因为它成本低廉且易于部署。用户经常选择熟悉的单词作为密码,因为这些单词容易记住。密码可能会从薄弱的系统中泄露。介绍了一个集成创新技术的综合安全框架,以增强密码保护和用户身份验证。该方法涉及蜜字的结合和 AES(高级加密标准)算法的实现,以实现安全的密码存储。增强密码认证密钥交换(aPAKE)针对内部人员,蜜字技术针对外部攻击者。但它们都无法抵御这两种攻击。为了解决这个问题,我们引入了蜜字 PAKE(HPAKE)的概念,它使认证服务器能够识别密码泄露并达到超越传统方法的安全级别。此外,我们在蜜字机制、蜜字加密和标准化 aPAKE OPAQUE 的基础上构建了一个 HPAKE 结构。我们对我们的设计进行了正式的安全分析,确保能够抵御内部威胁并检测密码泄露。我们实施了巡回设计并将其部署在真实环境中。实验结果表明,我们的协议一次完整运行仅耗时 71.27 毫秒,计算耗时 20.67 毫秒,通信耗时 50.6 毫秒。这表明我们的设计既安全又适合实际实施。索引术语 – Honey 密码、AES、TLS、增强密码认证密钥交换 (aPAKE) I 引言
这是以下文章的同行评审版本:hua,y,zhou,s,cui,h,liu,x,zhang,chang,c,c,xu,x,x,x,ling,h&yang,s 2020,'对电动汽车锂离子电池的不一致和均衡技术的全面审查,国际能源杂志。44,否。14,pp。11059 11087.,该版本以https://dx.doi.org/10.1002/er.5683的最终形式出版,本文可以根据Wiley的条款和条件来用于非商业目的。
本文介绍了一个中央银行数字货币 (CBDC) 基础设施的创新项目。该架构注重安全性和可靠性,其特点包括:(1) 采用后量子密码 (PQC) 算法来确保长期安全性,甚至可以抵御能够访问密码相关量子计算机的攻击者;(2) 可以与可信执行环境 (TEE) 集成,以在第三方处理交易内容时保护其机密性;(3) 使用分布式账本技术 (DLT) 来提高系统中注册的所有交易的高透明度和防篡改能力。除了从理论上讨论该架构的优势外,我们还通过实验评估了其组件。即,作为 PQC 算法,我们考虑了美国国家标准与技术研究所 (NIST) 正在标准化的三种签名方案,即 CRYSTALS-Dilithium、Falcon 和 SPHINCS+。这些算法集成到 Hyperledger Besu (DLT) 中,并在 Intel SGX TEE 环境内部和外部执行。根据我们的结果,CRYSTALS-Dilithium-2 与经典 secp256k1 签名相结合,在 DLT 中签署区块时可实现最短的执行时间,在没有 TEE 的情况下达到 1.68 毫秒,在有 TEE 的情况下达到 2.09 毫秒。同样的组合也显示出最佳的签名验证结果,在没有 TEE 的情况下达到 0.5 毫秒,在有 TEE 的情况下达到 1.98 毫秒。我们还描述了评估方法的主要方面以及验证所提议基础设施的后续步骤。从我们的实验中得出的结论是,PQC 和 TEE 的组合有望实现高度安全有效的基于 DLT 的 CBDC 场景,随时准备应对数字金融未来的挑战和潜在的量子威胁。
CTT 总体上人手不足 90%,部队结构人手不足 87% ***评级人手不足。无转换*** PACT 评级;PACT 候选人应尽早联系 CTT TECHAD 讨论许可要求。转换适用于多个年级组。提交转换请求前,请查看 NyNavyHR 上的转换清单。
摘要:数字景观中的身份验证是由于不断发展的网络威胁而面临的持续挑战。传统的基于文本的密码,这些密码容易受到各种攻击,因此需要创新解决方案来加强用户系统。本文介绍了Rosecliff算法,该算法是一种双重身份验证机制,旨在提高针对复杂的黑客尝试的弹性并不断发展存储的密码。该研究探讨了加密技术,包括对称,不对称和混合加密,从而解决了量子计算机构成的新兴威胁。Rosecliff算法将动态介绍给密码中,该密码允许在多个平台上进行更安全的通信。评估算法的强大攻击,例如蛮力,字典攻击,中间攻击和基于机器学习的攻击。Rosecliff算法通过其动态密码的一代和加密方法,证明了针对这些威胁有效的。可用性评估包括实施和管理阶段,专注于无缝集成以及用户体验,强调清晰度和满意度。限制被承认,从而敦促对加密技术的弹性,鲁棒性的鲁棒性以及对新兴技术的整合的进一步研究。总而言之,Rosecliff算法是一种有希望的解决方案,从而有效地应对现代身份验证挑战的复杂性,并为未来的数字安全研究和增强功能奠定了基础。
•使用一个64位块,我们可以将每个可能的输入块视为2 64个整数之一,对于每个此类整数,我们可以指定输出64位块。我们可以通过仅按照与输入块相对应的整数的顺序显示输出块来构造代码簿。这样的代码簿将大小为64×264≈1021。
3通用量子计算机的概念是经典通用计算机一词的量子类比。非常粗略:在通用量子上,计算机可以运行任何量子算法。量子计算机的可伸缩性意味着其计算范围的较小增加(例如,输入的扩展)将不需要大量要求,并且对可伸缩量子计算机的输入长度将逐渐扩展。可靠(容错)量子计算机应以足够的精度去除任何长量子计算的错误。4当代通用量子计算机被称为NISQ-嘈杂的中间量表量子(计算机),即中间尺度的拳头量子计算机。可能是构建隐性相关量子计算机的最大问题是难以确保足够可靠的降噪。根据一些估计,需要一千个物理量子[23],[24]才能实现一个可靠的工作逻辑量子。逻辑量子位是位的量子类比。量子算法可与逻辑Qubits一起使用。物理量子位是一个量子系统,具有两个基本状态的可控制的一般叠加。逻辑Qubits是能够在可靠的量子计算中代表量子算法中量子位的物理量子系统的系统。
教科书:编码理论的加密概论,Wade Trappe,L.C。华盛顿,第三版,皮尔逊教育,2020年。参考:了解密码学,C。Paar,J。Pelzl,Springer,2010
肿瘤药物开发极具挑战性,临床试验的成功率不到 5%。这个令人震惊的数字表明,需要更详细地研究药物在特定情况下的多种生物学效应。事实上,对药物多药理学的全面评估可以深入了解它们的治疗和副作用,以优化它们的利用率并最大限度地提高临床试验的成功率。最近的技术进步使得深入研究药物多药理学成为可能。本综述首先重点介绍了用于揭示现有药物新作用机制的高通量方法。然后,我们讨论了新兴的化学蛋白质组学策略如何以无监督的方式有效地剖析药物的多药理学。