找到最大独立集是经典的NP - 硬性问题之一[42]。此外,[36,60]的开创性工作证明了近似MIS的大小至在任何δ> 0的n 1-δ以内的NP硬度。相比之下,输出任何一个顶点都可以琐碎地给出n- apptroximation。[10]给出了一个非平凡的O(n/ log 2 n) - 近似MIS,后来[29]改进了这一点。这些结果表明,该问题的一般形式很难,因此,许多研究工作已致力于在特殊情况下进行近似算法,例如平面图[3,47],矩形交流图[16,22,32],and Expiented-timential-pimential-pimential-time algorith算法[51,31,31,59,59,59,59,59,12]。另一方面,启发式算法尽管有糟糕的案例保证,但在现实世界图上通常表现出值得称赞的表现[4,24,57]。例如,贪婪算法仅提供O(∆)的近似保证,其中∆是g的最大程度。但是,它经常产生令人满意的经验结果。最差的硬度硬度和实际效率之间的差距激发了我们通过超出最坏情况分析的视角研究MIS问题[11,52]。,特别是在现代背景下,我们提出了一个问题的问题,该问题是通过学习吸引人的甲壳的最大独立集。
摘要 — 微电子热敏电机 (TE) 发电机 (μ TEG) 是一种常见的潜在解决方案功率发电机和单相集成电路 (IC)。由于 µ TEG 电路中的寄生电阻和热阻,因此存在性能限制。寄生效应或曼塞洛斯可能会严重影响使用相对低 TE 性能指标(如硅 (Si))的 TEG 器件。在这种情况下,必须仔细注意整个 TEG 电路,而不仅仅是 TE 材料特性。这里,μ TEG 器件的定量模型包括所有与 I C 兼容的常见的重要电和热寄生器件。该模型提供了有关可再生能源发电和效率的耦合方程组或数值解。考虑到现场的抗裂性和实际性能值,该模型显示了 TE 元件总横截面的横截面积热比(称为“包装分数”)。在整个区域或在其流动区域,可以指定功率或效率,但不能同时实现两者。对于实际的材料和设备参数,优化系数通常为 1 % – 1 0 %,低于许多 µ TEG 设计中使用的值。模型说明了一些 TEG 示例的发电情况,并提供了显着的性能或改善效果的设计。索引术语——能源采集、热电 (TE)、TE 发电机。
本报告主要关注环境评估和审批流程,这些流程可以进行调整和加强,以帮助支持能源转型任务的完成。人们认识到,一系列其他考虑因素将适用于能源转型,包括国家电力市场的运作、资金和补助激励、人权考虑、劳动力和物流,所有这些都将影响能源转型。我们在本报告中没有详细考虑这些问题,只是认识到有一系列相互竞争和互补的杠杆和工具可以依靠来实现能源转型。
对技术解决技术的问题的简要描述旨在为幼儿园和小学的教师提供一种工具,以研究与社会情感学习和群体情感氛围有关的概念。实际上,这项研究强调了在学校课程中插入社会情感学习的重要性,为学生提供了与表达,认可和调节情绪有关的技能发展的发展。研究还表明,教师如何对将社会情感学习融入其教育计划以及技术如何帮助传达这些概念的想法表示关注。<挖掘变革利用了有形技术的潜力,根据参考文献,这些技术能够刺激用户的好奇心和参与度。优势该技术提出了以下优点:
解决量子计算机上的组合优化问题自量子计算出现以来吸引了许多研究人员。最大k -cut问题是一个具有挑战性的组合优化问题,具有多种众所周知的优化公式。然而,其混合成分线性优化(MILO)制剂和混合整数半限定的操作配方都是为了解决的所有时间耗时。以经典和量子求解器的最新进展为动机,我们研究了二进制二次优化(BQO)配方和两个二次不受约束的二元式操作配方。首先,我们将BQO配方与Milo配方进行比较。此外,我们提出了一种算法,该算法将BQO公式的任何原始分数溶液转换为可行的二元溶液,其目标值至少与分数溶液的目标值一样好。最后,我们发现了提出的二次不受欢迎的二进制优化公式的紧密惩罚系数。
目的:探索2型糖尿病(T2DM)对心力衰竭(HF)患者运动耐受性和脂肪氧化能力的影响。方法:我们回顾性地分析了108例HF患者,他们分为糖尿病组(T2DM组,n = 47)和一个非糖尿病组(非T2DM组,n = 61)。所有受试者完成了心肺运动测试(CPX)。我们通过间接量热法确定了它们的脂肪氧化(FATOX)。结果:在HF患者中,T2DM组的峰值氧摄取(VO 2)值为14.76±3.27 ml/kg/min,非T2DM组的峰值摄入量为14.76±3.27 ml/kg/min,17.76±4.64 ml/kg/min。在调整年龄,性别,体重指数(BMI)后,n末端pro-b型发作肽(log nt-probnp),左心室射血分数(LVEF),血红蛋白,肾功能,冠心病,心脏病和高压率较低,峰值与T2DM的峰值相比,峰值较低的A组较低。 ml/kg/min [95%的置置间隔(CI),-3.18至-0.82,p <0.01]。T2DM组的厌氧阈值(在VO 2处)的VO 2也低于非T2DM组,MD为-1.11 ml/kg/min(95%CI-2.04至-0.18,p <0.05)。关于CPX期间的脂肪氧化能力,T2DM组的最大脂肪氧化(MFO)低于非T2DM组的最大脂肪氧化(MFO)(0.143±0.055,而0.169±0.061 g/min,p <0.05)。此外,与非T2DM组相比,T2DM组的运动强度水平为40%(p <0.05)和50%(p <0.05)的运动强度水平较低(p <0.05)和50%(p <0.05)。
Chubb是用于指代Chubb Limited的子公司提供保险和相关服务的营销名称。有关这些子公司的列表,请访问我们的网站www.chubb.com。由ACE American Insurance Company及其总部位于美国的Chubb承销公司分支机构提供的保险。所有州都不可用所有产品。此材料仅包含产品摘要。覆盖范围受实际发布的政策语言的约束。剩余线路保险仅通过许可的盈余生产商出售。本文介绍的材料本质上是咨询的,可作为用于维护预防损失计划的专业保险顾问一起使用的资源。它不是旨在替代法律,保险或其他专业建议的替代品,而是仅用于一般信息。您应就您可能遇到的任何法律或技术问题咨询知识渊博的法律顾问或其他知识渊博的专家。Chubb,霍尔米尔路202号,怀特豪斯车站,新泽西州0889-1600。
蒙蒂菲奥里爱因斯坦癌症护理中心是东北地区第一家为癌症患者提供三种“区域性”化疗的机构,这种疗法超出了标准的手术切除范围,但仍然局限于身体的某个器官或部位。区域灌注疗法是隔离腹腔或手臂、腿部或肝脏的血液循环系统,然后以高于静脉注射安全剂量的剂量将浓缩剂量的抗癌药物输送到身体的目标部位。这种方法可以帮助患者避免标准化疗的副作用并提高治疗效果。蒙蒂菲奥里医疗中心组建了一支由外科医生、护士、麻醉师和灌注师组成的专家协调团队,为癌症患者提供这种独特的治疗方法。“区域灌注疗法在最大限度地增加药物剂量和最大限度地减少对患者的毒性之间找到了完美的平衡,”蒙蒂菲奥里爱因斯坦癌症护理中心主任、医学博士 Steven K. Libutti 说。 “我们是中大西洋地区和新英格兰地区第一家为重症患者提供三种高效灌注疗法的中心。” 在来到蒙蒂菲奥里之前,利布蒂博士在美国国家癌症研究所进行了大约 200 次肝脏灌注和 200 次腹膜(腹部)灌注。
虽然实施人工智能可以通过降低成本、提高速度和改善质量来增强审计流程,但内部审计人员需要权衡利弊,因为几乎没有机会立即实现所有好处。他们应该意识到,在人工智能产生真正有意义的影响之前,短期成本往往会增加。例如,将人工智能嵌入审计流程可能需要增加一次性设置和培训成本,这将导致更快、更高质量的审计,或者通过 100% 检查人群实现更高质量的审计,但也可能导致识别多个误报,这可能导致在嵌入新流程时审计流程放缓。
附件 A — 胜科 ESS 项目详情 1)远景能源管理系统和 SCADA 平台提高日常运营效率 胜科 ESS 使用远景的监控和数据采集 (SCADA) 平台,该平台提供对 ESS 的监控和控制,从站点级别到每个电池单元和辅助设备。关键性能指标、事件警报和数据分析用于实时跟踪系统的整体性能。这提高了日常运营和维护的效率。远景的能源管理系统 (EMS) 可以监控和控制 ESS 的电源。EMS 控制和监视电池输出的准确性、速度和稳定性,确保最大功率性能以满足电网的调度要求。远景的智能液体冷却技术还将与电池设计配合使用,以提高能量密度并降低 ESS 的能耗。远景数字全球执行董事丁耘先生表示:“我们很高兴与胜科工业合作,在六个月内完成新加坡最大的公用事业规模绿地储能系统项目。这支持了国家的绿色计划,也肯定了净零技术合作对于加速向净零能源转型的重要性。” 2)华为电池系统维持最佳温度以实现稳定的电力输出 胜科储能系统采用华为的分散式温控系统,可将电池的温差维持在较窄的范围内。这延长了电池的使用寿命并确保了稳定的电力输出。 电池系统中有几级主动和被动安全保护功能。这包括分布式温度、湿度和烟雾传感器,可检测危险物质并在出现不利操作条件时发出警报。 华为国际首席执行官符方勇先生表示:“华为很高兴有机会提供我们最新的创新成果,这些创新成果融合了数字和电力电子技术,通过在该地区提供先进、智能和安全的储能解决方案来推动清洁能源革命。裕廊岛的公用事业规模储能系统部署开启了新加坡绿色之旅的新篇章,我们很荣幸能够部署我们的储能系统技术。”