薄膜硅锂(TFLN)已成为实现高性能芯片尺度光学系统的有前途的平台,涵盖了从光学通信到微波光子学的一系列应用。此类应用程序依赖于将多个组件集成到单个平台上。然而,尽管其中许多组件已经在TFLN平台上进行了证明,但迄今为止,该平台的主要瓶颈是存在可调,高功率和狭窄的芯片激光器的存在。在这里,我们使用光子线粘结解决了这个问题,将光学放大器与薄膜锂锂反馈电路集成在一起,并证明了扩展的腔二极管激光器,产生了78 MW的高芯片上功率,侧模式抑制较大,大于60 dB,大于43 nm的宽波长可调节性。在短时间内的激光频率稳定性显示了550 Hz的超鼻中固有线宽,而长期记录表明,光子线键合激光器的高无源稳定性具有46小时的无模式跳动操作。这项工作将光子线粘结验证为用于高性能在芯片激光器上的可行集成解决方案,为系统级别的升级和瓦特级输出功率打开了路径。
合适的治疗指数对于药物的发现和开发至关重要,因为剂量稍有变化的窄治疗指数 (NTI) 药物可能会引起严重的药物不良反应或潜在的治疗失败。迄今为止,已有多项研究探索了 NTI 药物靶标的共同特征,并已将其用于识别潜在的药物靶标。然而,药物治疗指数与相关疾病之间的关联尚未被剖析,这对于揭示 NTI 药物机制和优化药物设计非常重要。因此,本研究选择了 NTI 药物数量最多的两类疾病(癌症和心血管疾病),并分析了相应 NTI 药物的靶标属性。通过计算药物靶标的生物系统概况和人类蛋白质-蛋白质相互作用 (PPI) 网络属性,并采用基于 AI 的算法,发现了两种疾病之间的差异特征,从而揭示了 NTI 药物在不同疾病中的不同潜在机制。因此,我们为这两种疾病确定了十个共同特征和四个独特特征,以区分 NTI 和 NNTI 药物靶标。这些计算发现以及新发现的特征表明,在避免这些疾病的治疗指数狭窄的临床研究中,应考虑靶标作为枢纽的能力以及人类PPI网络中靶标信号传导的效率,从而为药物发现和临床研究过程提供新的指导,并有助于评估癌症和心血管疾病的药物安全性。2021 作者。由 Elsevier BV 代表计算和结构生物技术研究网络出版。这是一篇根据 CC BY-NC-ND 许可协议开放获取的文章(http://creative-commons.org/licenses/by-nc-nd/4.0/)。
薄膜硅锂(TFLN)已成为实现高性能芯片尺度光学系统的有前途的平台,涵盖了从光学通信到微波光子学的一系列应用。此类应用程序依赖于将多个组件集成到单个平台上。然而,尽管其中许多组件已经在TFLN平台上进行了证明,但迄今为止,该平台的主要瓶颈是存在可调,高功率和狭窄的芯片激光器的存在。在这里,我们使用光子线粘结解决了这个问题,将光学放大器与薄膜锂锂反馈电路集成在一起,并证明了扩展的腔二极管激光器,产生了78 MW的高芯片上功率,侧模式抑制较大,大于60 dB,大于43 nm的宽波长可调节性。在短时间内的激光频率稳定性显示了550 Hz的超鼻中固有线宽。长期记录表明,光子线键键激光器具有58小时的无模式操作的高无源稳定性,频率漂移仅为4.4 MHz/h。这项工作将光子线粘结验证为用于高性能在芯片激光器上的可行集成解决方案,为系统级别的升级和瓦特级输出功率打开了路径。
图 1 理想主动脉几何模型示意图。(a)健康主动脉。(b)主动脉缩窄。缩窄程度为 75%,定义为缩窄处与降主动脉半径比之差。(c)主动脉瘤。注射器指示微载体从近壁区域(距壁 1 毫米)释放的位置。
捕获 40 Ca + 离子的量子信息科学实验需要波长为 729 nm 的窄线宽激光器来驱动 4 2 S 1 / 2 和 3 2 D 5 / 2 之间的量子比特跃迁。本文介绍了一种钛宝石激光器,该激光器使用 Pound-Drever-Hall 技术将频率稳定到波长为 729 nm 的参考腔。激光线宽是通过与其他频率稳定激光器的拍频测量和对单个捕获 40 Ca + 离子的 Ramsey 实验来测量的。最窄的测量线宽 (FWHM) 是通过拍频测量获得的,在测量时间为 1 s 时为 4.2(17) Hz,代表了钛宝石激光器线宽的上限。在参考腔下方安装隔振板后实现了这个最窄的线宽。对已安装的光纤噪声消除和激光强度稳定装置的分析表明,光纤和激光强度噪声不会限制最窄的测量线宽。还利用其他频率稳定激光器的拍频测量来获得稳定激光器频率漂移的值,测量结果为 -371(3) mHz/s。
* 对于窄脸型,拉动口罩臂使其收紧的动作会导致口罩高度增加。脸型越窄,较小的口罩越可能更贴合。 * 测量时面部应放松 * 没有任何指导方针可以确保您拥有适合您脸型的正确尺寸口罩。您必须根据 OSHA 法规 1910.134 确认是否贴合。
部分由于可用性问题,他们使用基于智能手机的提醒功能的次数少于一般人群。有证据表明,与屏幕较少但每屏信息较多(窄深 UI)的用户界面 (UI) 设计相比,屏幕较少但每屏信息较多(宽浅 UI)的用户界面 (UI) 设计可能对这一群体更有益。这项研究比较了 32 名患有后天性脑损伤的人在使用窄深和宽浅 UI 设置提醒功能时的速度、准确性、所需指导和任务负荷的差异。他们还接受了认知评估(测量选择性注意力、执行功能和整体执行和记忆能力)并接受有关他们的 UI 偏好的访谈。准确性存在显著差异;与窄深 UI 相比,使用宽浅 UI 的参与者准确性较低(平均每设置三个提醒功能就会多犯两个错误)。造成这种差异的原因是参与者在使用宽浅 UI 时省略了更多信息。速度、所需指导和总体任务负荷没有差异。相比宽浅界面,选择性注意力更强、智能手机使用经验更丰富的参与者从窄深界面受益最多。大多数参与者更喜欢其中一种界面。喜欢窄深界面的人发现它更容易使用,他们错过的信息更少,并且喜欢一次只看一条信息。喜欢宽浅界面的人发现它更容易查看信息,并且不太可能迷失方向。这些发现可以为实施界面选择提供参考,使应用程序更适合有认知障碍的人使用。
•与BQ25703A兼容的针脚和软件•充电1至4S电池从广泛的输入源 - 3.5-V至24-V输入操作电压 - 支持USB2.0,USB 3.0,USB 3.0,USB 3.1(C型C)和USB电源(USB供应(USB-PD)输入(USB-PD)输入(USB-PD) - 无需(USB-PD)的运算 - 毫无目前的运算 - (IDPM和VDPM)针对来源超负荷•电源/当前的CPU节流电源监视器 - 全面的ProChot轮廓,IMVP8/IMVP9符合符合的和电池电流监视器 - 系统电源监视器 - IMVP8/IMVP9兼容•符合范围的电压DC(NVDC)电源型电池管理 - 无电量型电池组件 - 电池组件 - 电池启动 - 电池 - 电池 - 电池 - 电池 - 电池 - 电池 - 电池 - 电池 - 电池 - 电池 - 电池 - 电池电量 - 电池 - 电池 - 电池电量 - diode operation in supplement mode • Power up USB port from battery (USB OTG) – 3-V to 20.8-V VOTG With 8-mV resolution – Output current limit up to 6.4 A with 50-mA resolution • TI patented Pass Through Mode (PTM) for system power efficiency improvement and battery fast charging • When system is powered by battery only, Vmin Active Protection (VAP) mode supplements battery from input capacitors during system peak power spike •输入当前优化器(ICO)以提取最大输入功率•800-kHz或1.2-MHz可编程的可编程开关频率,以2.2-µh或1.0-µh电感器或1.0-µh电感器•用于灵活的系统配置的主机控制接口 - I 2 C端口最佳系统性能和状态的最佳系统性能和状态报告 - 无需进行EC的限制•电动量•电动量•电动量•电动量•电动量•电动量•电动量•电动量•电动量•