从 X 射线衍射实验中观察到,基材上固化的聚酰亚胺薄膜的取向使得酰亚胺链优先沿薄膜的平面方向排列。对于具有刚性棒状聚酰亚胺的薄膜,薄膜取向尤其突出,并且随着薄膜厚度的增加而显着降低。涂层厚度对聚酰亚胺薄膜取向和有序性的影响在纯均苯四甲酸二酐-对苯二胺 (PMDA-PDA) 薄膜中最为明显,在含有 50% 均苯四甲酸二酐-4,4'-二苯氧基二苯胺 (PMDA-ODA) 和 50% PMDA-PDA 的薄膜中略小,而在含有 100% PMDA-ODA 的薄膜中相对不明显。根据傅里叶变换红外衰减全反射光谱实验的C=O和C-N拉伸吸收带,位于薄膜中心附近的酰亚胺分子表现出比靠近表面的酰亚胺分子更差的结构有序性。这揭示了为什么随着薄膜厚度的增加,平均薄膜取向会降低,相应的热膨胀系数会增大。
从 X 射线衍射实验中观察到,基材上固化的聚酰亚胺薄膜的取向使得酰亚胺链优先沿薄膜的平面方向排列。对于具有刚性棒状聚酰亚胺的薄膜,薄膜取向尤其突出,并且随着薄膜厚度的增加而显着降低。涂层厚度对聚酰亚胺薄膜取向和有序性的影响在纯均苯四甲酸二酐-对苯二胺 (PMDA-PDA) 薄膜中最为明显,在含有 50% 均苯四甲酸二酐-4,4'-二苯氧基二苯胺 (PMDA-ODA) 和 50% PMDA-PDA 的薄膜中略小,而在含有 100% PMDA-ODA 的薄膜中相对不明显。根据傅里叶变换红外衰减全反射光谱实验的C=O和C-N拉伸吸收带,位于薄膜中心附近的酰亚胺分子表现出比靠近表面的酰亚胺分子更差的结构有序性。这揭示了为什么随着薄膜厚度的增加,平均薄膜取向会降低,相应的热膨胀系数会增大。
聚合物和小分子混合薄膜在有机电子器件,尤其是有机太阳能电池中具有极高的应用价值。普通 P3HT 和最先进的 Y 系列非富勒烯受体 (NFAs) 的混合物具有很高的可混溶性,可以抑制相分离和聚集,从而抑制电荷分离和传输。在最近的一项研究中,引入了电流诱导掺杂 (CID),这是一种精确控制溶液中聚 (3-己基噻吩) (P3HT) 聚集的方法。本文使用溶液中高度有序的预聚集来控制纯膜和与 Y12 (BTP-4F-12) 的混合物中的 P3HT 聚集。这使得 P3HT 有机场效应晶体管 (OFET) 器件中的空穴迁移率提高了 25 倍,并且在 Y12 存在下 P3HT 聚集体质量可以在大范围内可调。同时,特别是 Y12 长程有序性因 P3HT 聚集性的增加而受到严重抑制。然而,溶剂蒸汽退火 (SVA) 可导致 Y12 有序性极高,Y12 晶体取向发生变化,P3HT 聚集性进一步改善。因此,仅通过改变加工参数而不改变材料系统的组成,就可以在最终薄膜中获得两种材料不同程度的聚集。
正是基于这一积极的基础,圣文德大学致力于每位学生的个人和学术发展。圣文德大学拥有一支致力于方济各思想传统的学术、研究和教学的教师队伍。我们生活在一个所谓的“加速时代”,变化的数量和速度同时以前所未有的力量影响着我们生活的各个方面(个人、社会、经济、心理和精神)。我们的学生必须准备好进入一个全球化的世界,这个世界需要理解、同化、融合、解读和行动的技能,而这些技能的有序性和速度是其他任何一代人都未曾面对过的。为了让我们的学生做好准备,大学必须大胆、积极、主动并以使命为基础。
MATL 6250. 软物质。(4 小时)介绍相对年轻的软物质领域,涵盖软物质各种状态的物理描述,包括液体、胶体、聚合物、泡沫、凝胶、颗粒材料和多种生物材料。软物质(也称为“软凝聚态”或“复杂流体”)的有序性低于金属和氧化物(硬凝聚态),更容易受到热波动和施加力的影响。侧重于批判性思维、问题诊断、估计、统计分析和基于数据的决策。包括许多课堂演示,从胶体组装到乳液稳定性再到细胞凋亡。重点介绍工业加工、生命科学和环境修复等应用。需要相关领域的研究生学习或获得讲师许可。
迄今为止,简单二元材料类中的铁电性 (FE) 已引起人们对其多功能应用的极大兴趣。具体而言,利用第一性原理密度泛函计算预测了岩盐氧化物中的 FE 有序性 [1]。参考文献 [2] 指出,利用外延应变确实可以在铁磁岩盐 EuO 中诱导铁电性,从而使其具有多铁性 [3]。实验上,可以通过合适基底上的晶格失配、拉伸薄膜或通过化学掺杂剂来调整应变 [4,5]。外部应变已被用于诱导新型金属-绝缘体转变 [6] 和层状氧化物中的极性-非极性转变 [7]。此外,在 c 方向施加正应变时,电场可以在最初中心对称的氧非化学计量氧化物 Gd 掺杂 CeO 2-x 中诱导化学膨胀和高压电性 [8]。
近年来,液晶技术的飞速发展引起了人们的广泛关注。液晶(LC)存在于晶体和各向同性液体之间的中间相,同时表现出流动性和各向异性。作为一种高灵敏度、刺激响应性材料,液晶对外界刺激(包括温度、电场、磁场、光和表面活性剂)反应迅速。液晶分子的长程有序性使其可用于传感平台中的光信号放大器。它可以实现对各种目标(例如温度、化学分析物和生物分子)的简单、快速和灵敏的检测。基于液晶的化学传感器和生物传感器被视为最新的传感平台,可用于环境监测、工业和疾病诊断领域。本期特刊旨在整理围绕液晶光学传感技术的最新创新研究和评论论文,这些论文提供了材料、结构、检测技术、器件制造、传感性能和应用方面的最新研究。
引入了一类新的信息物理学 [1],其中提出物理熵是两个相互补偿的量值的组合。观察者的无知用香农统计熵来衡量 [4],算法熵度量被观察系统的无序性(将其记录在内存中所需的最小位数)。Atlan [5] 定义系统的有序性是最大信息内容(可能的多样性)和最大冗余之间的承诺。模糊性可以被描述为噪声函数,它可以以负面的方式(破坏性模糊性)表现出来,具有经典的解组效应,也可以以正面的方式(自主性产生模糊性)表现出来,通过增加系统某部分的相对自主性,减少系统的自然冗余并增加其信息内容来发挥作用。我们可以将 Zurek 的方法 [1] 扩展到复杂领域,其中物理熵是一个可以分解为 x 轴和 y 轴的变量。x 轴表示
我们系统地研究了流体动力学模拟中超子全局极化对碰撞系统初始纵向流速的敏感性。通过在将初始碰撞几何映射到宏观流体动力学场时明确施加局部能量动量守恒,我们研究了系统的轨道角动量 (OAM) 和流体涡度的演变。我们发现同时描述 Λ 超子的全局极化和介子定向流的斜率可以强烈限制流体动力学演化开始时纵向流的大小。我们利用 RHIC 光束能量扫描程序中的 STAR 测量结果提取了初始纵向流的大小和产生的 QGP 流体中轨道角动量分数作为碰撞能量的函数。我们发现在流体动力学演化开始时,中快速度流体中剩余约 100-200 ℏ OAM。我们进一步考察了不同的流体动力学梯度对Λ和¯ Λ自旋极化的影响。µ B /T的梯度可以改变Λ和¯ Λ极化之间的有序性。
摘要 石墨烯气凝胶纤维(GAF)兼具石墨烯的轻质、高比强度和导电性等优点,在多功能可穿戴纺织品中展现出巨大潜力。然而,GAF 纺织品的结构稳定性低,大大限制了其制备和应用。本文报道了一种塑性膨胀法制备高性能、多功能 GAF 纺织品。GAF 纺织品是通过塑性膨胀、预织氧化石墨烯纤维(GOF)丝束纺织品实现的。这种近固体的塑性膨胀工艺使纺织品中的 GAF 保持较高的结构有序性和可控的密度,在密度为 0.4 g cm −3 时表现出高达 103 MPa 的高拉伸强度和高达 1.06×10 4 S m −1 的电导率。GAF 纺织品表现出 113 MPa 的高强度、多种电学和热功能以及高孔隙率,可作为更多功能客体的主体材料。塑性膨胀为制造各种气凝胶纤维纺织品提供了一种通用策略,为其实际应用铺平了道路。