获取独家产品信息,尽享促销优惠!立即订阅,不容错过
* 限···时··优惠
摘要 - 从尖端的超级计算机中获得支持极大的科学模拟,气候研究在过去几十年中取得了显着发展。,在有效地存储和传输大规模的气候数据之间,出现了新的关键挑战。在本文中,我们开发了CLIZ,这是一种有效的在线错误控制有损压缩方法,具有优化的数据预测和对气候数据集跨各种气候模型的编码方法。一方面,我们探索了如何利用气候数据集的特定属性(例如蒙版信息,维度置换/融合和数据周期性模式)以提高数据预测准确性。另一方面,Cliz采用了一种新型的多霍夫曼编码方法,可以显着提高编码效率。因此显着提高了压缩比。我们根据具有不同模型的多个实地世界气候数据集评估了CLIZ与许多其他最先进的错误控制损耗压缩机(包括SZ3,ZFP,SPERR和QOZ)。实验表明,Cliz在气候数据集上的表现优于第二好的压缩机(SZ3,SPERR或QOZ1.1)的压缩比的压缩率高20%-200%。cliz可以将两个远程Globus终点之间的数据传输成本显着降低32%-38%。索引术语 - 错误控制的损耗压缩,气候数据集,分布式数据存储库/数据库