在这项工作中,我们从理论上提出并在实验上证明了在光子晶体平坦带上连续体(BIC)中的超结合状态的形成。这种独特的状态同时在布里渊区的扩展区域中表现出增强的质量因子和接近零组的速度。在拓扑转换时实现了对称性保护的BIC固定在K = 0与两个Friedrich-Wintgen Quasi-BICS合并,这是由相反对称性的有损光子模式之间的破坏性干扰引起的。作为概念验证,我们采用了Ultraflat Super BIC来证明单个颗粒的三维光学诱捕。我们的发现提出了一种新颖的方法,可以在次波长量表上为创新光电设备的次波长量表进行工程。
• 遵守认证方案的相关规定 • 仅针对已授予认证的范围(标准)提出声明 • 在认证被暂停或撤销后,停止使用包含任何认证机构引用的所有认证声明 • 避免以误导性的方式使用认证 • 了解 MSSC“关键活动”文件,该文件描述了 CPT 证书和完整认证适用的主要生产活动。 • 解释 MSSC 证书仅记录个人在与该证书相关的关键活动方面达到国家认证评估所需绩效水平的能力。 • 避免以有损 MSSC 声誉的方式使用认证 • 了解违反上述任何原则都可能导致此证书被暂停或撤销,此后个人应停止使用所有 MSSC 认证声明 • 避免以任何方式更改认证文件
隐蔽通信或低检测/拦截概率 (LPD/LPI) 通信可以防止对手检测到传输。与标准方法(例如量子密钥分发 (QKD))提供的保护传输内容免遭未经授权的访问相比,这是一种更严格的安全要求。在这里,我们重点介绍图 1 所示的热噪声有损玻色子通道上的量子安全隐蔽通信。玻色子通道是光通道的量子力学描述,其参数为发射器 Alice 和预期接收器 Bob 之间的透射率 η,以及热环境注入的每种模式的平均光子数 ¯ n B,其中单个时空偏振模式是我们的基本传输单元。Alice 的目标是可靠地将数据传输给 Bob,即以任意小的解码错误概率。这必须隐蔽地完成:确保对手 Willie 可以构造的任何检测器都接近随机猜测。
随着全球人口老龄化,缺血性卒中的发病率逐年增加。大血管闭塞患者的预后通常较差,因为严重的卒中会损害意识、导致瘫痪并可能导致死亡 ( 1 , 2 )。近年来,卒中的预防和治疗取得了进展,发病率和死亡率显著下降。然而,对急性缺血性卒中 (AIS) 患者的治疗效果仍然有限。静脉血栓溶解和血管内治疗是目前最有效的恢复血流的再灌注疗法,且血管内治疗的再通率高于静脉血栓溶解 ( 3 , 4 )。然而,再灌注治疗有损伤风险,可能导致出血性转化 (HT),从而导致神经功能恶化和死亡率增加 ( 5 )。此外,血管内手术会增加 HT 的风险 ( 1 , 2 )。
编解码器包括两个组件,一个编码器和一个解码器,因此名称。视频编解码器的示例是H.264,H.265,VP9等…编解码器使用各种技术来压缩数据。压缩可以是无损的,在这种情况下,解码数据将产生与编码或有损的数据完全相同的数据,在这种情况下,解码数据的数据将丢失一些编码的数据。压缩越高,丢失的数据越多。通常,使用无损编解码器的使用会导致文件比有损失的文件更大。某些编解码器在制作等效质量的视频所需的数据量中比其他编解码器更有效。H.265以同等质量生产的文件小于H.264;但是,执行此操作所需的更复杂的方法通常意味着它们需要更长的时间来编码和解码视频。
摘要:近年来端到端学习的图像压缩编解码器显着出现。这些编解码器表现出比常规方法的优越性,在支持新的失真损失的同时,展示了各种数据域之间的显着灵活性和适应性。尽管诸如计算复杂性之类的挑战,但由于其非常合适的内部表示,学习的图像压缩方法与基于学习的数据处理和分析管道固有地保持一致。机器视频编码的概念引起了学术研究人员和行业从业人员的极大关注。这个概念反映了将数据压缩与计算机视觉应用程序集成的日益增长的需求。根据这些发展,我们提出了一项全面的调查和综述,对有损图像压缩方法。此外,我们还提供了两个著名国际标准的简明概述,即机器和JPEG AI的MPEG视频编码。这些标准旨在弥合数据压缩和计算机视觉之间的差距,以适应实际行业用例。
量子假设检验的最终目标是在所有可能的经典策略中实现量子优势。在量子读取方案中,这是从光学内存中获取信息的,其通用单元在两个可能的有损通道中存储了一些信息。我们在理论上和实验上表明,通过实用的光子计数测量结果与模拟最大样本决策相结合,可以获得量子优势。特别是,我们表明该接收器与纠缠的两种模式挤压真空源相结合,能够以相同的平均输入光子数量相干状态的统计混合物胜过任何策略。我们的实验发现表明,量子和简单的光学器件能够增强数字数据的读数,为量子读数的真实应用铺平了道路,并使用基于波斯克尼克损失的二元歧视的任何其他模型进行了潜在应用。
量子加密的嘈杂存储模型允许根据以下假设:作弊用户最多可以访问不完美,嘈杂的量子内存,而诚实的用户根本不需要量子存储器。通常,作弊用户的量子存储器越嘈杂,越来越安全的遗忘转移的实现,这是一个原始的,可以允许通用安全的两方和多方计算。对于遗忘转移的实验实现,必须考虑诚实用户所拥有的设备有损和嘈杂,并且需要应用错误校正以纠正这些可信赖的错误。后者有望降低协议的安全性,因为作弊用户可能会隐藏在可信赖的噪声中。在这里,我们利用熵的不确定性关系,以信任和不信任的噪声来获得关于遗忘转移的安全性的紧密界限。特别是,我们讨论具有独立且相关的噪声的嘈杂存储和有限存储。
36.2 黑暗天空 – 照明规范 § 163-36.2-1 目的 以下规定旨在控制和规范整个村庄的室外照明,以促进村庄道路和高速公路的公共安全,保护土地所有者免受眩光和光侵入的侵扰,保护村庄的乡村特色,维护和恢复夜空的美丽。 过度、无遮挡和方向错误的室外照明有许多不利影响。它有损北黑文的乡村特色,使村庄看起来越来越郊区化和过度开发。这种照明产生的眩光对夜间村庄道路上的司机和行人来说很危险。此外,这种照明会干扰居民的隐私,浪费能源,并产生天光,使夜空的可见度降低,并破坏动植物的自然夜间环境。本部分规定的规定适当考虑了室外照明的合法用途,同时为业主提供指导和指示。 § 163-36.2-2 照明标准。
摘要:保护物质中的量子相干性不受环境影响对于在量子技术中使用分子和材料以及开发增强光谱至关重要。本文展示了如何在光学腔的背景下用量子光修饰分子发色团,以产生具有可调相干时间尺度的量子叠加态,这些相干时间尺度比裸分子的相干时间尺度更长,即使在室温和浸入溶剂中的分子中也是如此。为此,我们开发了分子极化态的退相干率理论,并证明涉及这种混合光物质态的量子叠加可以比裸分子存活时间长几个数量级,同时保持光学可控性。此外,通过研究有损腔存在下的这些可调相干增强,我们证明它们可以使用当今的光学腔来实现。该分析提供了一种可行的策略来设计和增加分子中的量子相干寿命。