AI是创新和增长的新催化剂,但是许多组织仍然忽略了网络在AI计划中的战略重要性。他们倾向于专注于计算能力和数据处理功能,即使支持计算资源的网络也是AI基础架构同样重要的组成部分。无论是在数据中心中安装还是在边缘设备上分布,稳健和高带宽网络对于无缝数据流,实时处理以及AI系统之间的有效通信至关重要。
在该国与水资源相关的众多联邦、州和地方机构中,国家气象局内水文数据的有效通信比其他任何机构都更为重要。以前尝试标准化水文数据传输格式(例如 1961 年河流数据规范)表明我们早就认识到这种标准化的必要性。但是,由于各种原因,以前标准化传输格式的这些尝试从未得到广泛支持。当前以及未来计算机处理水文数据的能力表明,现在比以往任何时候都更需要一种标准的水文数据传输格式。我们密苏里盆地河流预报中心 (MBRFC) 相信标准水文交换格式 (SHEF) 将满足这一需求。
表 2 显示了 IOWN 全球论坛网络指标的演变,展示了未来发展的路线图。到 2030 年,网络将扩展全光连接的端点,从站点到站点的连接过渡到内存到内存的集成,如图 1 所示。这种扩展将推动不同的方向。例如,预计每个端点的带宽将显著增加,超过 10 Tbps。尽管端点的粒度和动态性有所提高,但网络运营商仍努力减少它们之间的延迟,以确保有效通信。此外,系统将检测和处理系统故障,减轻用户处理此类问题的负担。增加更多全光连接端点也有助于限制抖动,提高整体网络性能。
I. 引言 随着嵌入式系统变得越来越复杂,高速和低功耗组件之间的有效通信变得至关重要。ARM 的 AMBA(高级微控制器总线架构)协议提供了一个标准化框架来满足这一要求。在 AMBA 中,高级高性能总线 (AHB) 支持快速数据传输,而高级外设总线 (APB) 则专注于外设的低功耗操作。为了确保这两条总线之间的无缝交互,可靠的桥接对于高效的数据传输和系统集成是必不可少的。本研究以使用 Verilog 设计和实现 AHB 到 APB 桥接为中心。该桥接促进了高性能处理器和低功耗外设之间的互操作性,旨在优化性能并最大限度地减少延迟,同时遵守 AMBA 标准。严格的验证方法确保了其在不同用例中的可靠性,解决了总线通信中的关键挑战,并促进了嵌入式系统设计的进步。
在新的可持续和绿色能源时代,摘要开发电池本体来代表电池管理知识至关重要。由于电池生产收入预计到2030年每年将超过3000亿美元,研究人员正在探索新的电池材料,型号,标准和制造过程。AI和ML方法正在用于管理电池制造并提高性能。数据表示技术和格式对于增强电池数据的表现力和提高电池质量很重要。本文提出了一个本体,用于创建电池知识图,以解决数据互操作性挑战并在不同参与者之间共享电池数据。电池本体论包括各种类型的知识,例如域知识,电池应用和核心电池特定的知识。通过能力问题和可用性测试评估本体论。它旨在通过促进电池管理系统和应用之间的有效通信和数据交换来增强电池的生产和设计。这项研究具有重大的社会,经济和环境影响,因为它有助于开发更有效和可持续的电池。
车辆、飞机和卫星通常使用控制总线来实现设备和微控制器之间的有效通信。例如汽车中的控制器局域网 (CAN) 总线、商用飞机中使用的航空无线电公司 429 (ARINC 429) 标准以及军用飞机中使用的 MIL-STD-1553。这些总线标准是在大约 40 年前开发和实施的,当时人们认为系统固有的气隙特性可以提供足够的安全性。随着时间的推移,这一假设已被证明是错误的,气隙系统 (例如 Stuxnet) 中发生了大量漏洞。车辆和飞机的一个问题可能是安装恶意设备的可能性 (可能是通过维修技术人员),这反过来可能会破坏车辆数据总线的正常运行。先前的研究已经调查了通过 MIL-STD-1553 总线模拟波形的细微变化来使用设备指纹识别,但需要额外的硬件和软件来收集和处理传输的消息。在本文中,我们探讨了利用商用现成航空电子数据总线接口卡的有机功能来确定新设备是否已安装或是否伪装成其他设备的可行性。由于飞机上已有的设备正在使用,因此可以轻松实现此附加安全功能,而不会影响尺寸、重量或功率要求。
量子计算利用叠加和纠缠的原理,允许量子比特或量子位同时存在于多个状态中。这一特性使量子计算机能够以比传统计算机快得多的速度处理特定任务的数据,包括分解大数和解决复杂的优化问题。量子霸权的前景促使全球开展大量研究和开发工作,企业和研究机构竞相构建现实的量子处理器。尽管量子计算具有巨大的潜力,但要在现实应用中实现其优势仍需要克服艰巨的挑战。最大的障碍之一在于建立量子和经典结构之间的持续接口。量子处理器在敏感的量子王国中运行,必须与经典加法器进行通信,而不会损害量子数据的完整性。这种复杂的交互需要一种先进的 VLSI 架构,能够促进有效通信、最大限度地减少错误并优化量子-经典混合系统的整体性能。在量子计算接口的背景下混合 VLSI 需要摆脱传统策略。经典计算机遵循确定性原则,而量子结构则以概率方式运行,引入不确定性并要求同步条件。由于量子处理器产生具有固有概率不确定性的结果,VLSI 结构必须提供纠错机制和容错设计,以保持量子计算的可靠性。此外,经典和量子处理器之间的工作条件差异带来了额外的复杂性。量子处理器通常在极低的温度下工作以保持敏感量子态,而经典组件则在室温下工作。设计 VLSI 架构以促进绿色通信和跨这些温度梯度的数据传输需要创新的工程解决方案。在开发用于量子计算接口的 VLSI 架构的过程中,研究人员正在努力设计可扩展和模块化结构。量子处理器面临可扩展性挑战的风险,而 VLSI 在解决这些问题方面发挥着关键作用。可扩展架构的开发对于了解量子计算在解决实际问题方面的全部能力至关重要。尽管存在这些挑战,但目前量子计算接口 VLSI 架构的改进已取得显著进展。研究人员探索了各种策略,从集成到经典系统中的专用量子协处理器,到利用经典处理器完成精确任务同时将量子计算委托给专用处理器的混合架构。这些努力聚焦于不断发展的量子经典集成全景,其中 VLSI 架构是实现绿色和可扩展解决方案的关键。