NuSil 的太空级硅胶在低温下保持弹性,在高温下不易分解,在材料反复暴露于极端温度的太空中具有极佳的实用性。低排气(可控挥发性)为了减轻挥发性材料在重要周围设备上凝结,领先的太空计划使用 NuSil 的低排气和超低排气 TM 硅胶来提供所需的弹性保护,以防止污染和材料降解。美国宇航局 (NASA) 和欧洲航天局 (ESA) 要求材料在用于太空之前必须按照 ASTM E595 进行测试,并且必须符合美国宇航局 SP-R-0022A 和欧洲航天局 PSS-014-702 中概述的规格,总质量损失 (TML) ≤ 1.00%,收集的挥发性可冷凝物质 (CVCM) ≤ 0.10%。NuSil 的低排气材料满足或超过这些要求,我们的超低排气 TM 材料比这些标准高出一个数量级,TML ≤ 0.10% 和 CVCM ≤ 0.010%。
空间的极端温度和真空条件带来了独特的环境挑战。Nusil空间分级有机硅在这些恶劣条件下提供可靠的性能。在低至-120°C的温度下保持弹性,并在高于300°C的高温下抵抗分解。他们可以补偿热膨胀系数(CTE)不匹配的系数,并在热循环过程中保持稳定,因为航天器在太空中行驶时。光学清晰的硅树脂将光线传输到传感器和相机等应用的重要组件。我们的有机硅还提供减肥解决方案,以解决发射方面的问题并防止在轨道上的原子氧气。
有机硅是一个通用术语,指的是一类合成聚合物,这种聚合物基于交替的硅和氧(硅氧烷)键的骨架,其中至少一个有机基团通过直接的碳-硅键连接到硅原子上。Si-O 主链赋予了有机硅独特的物理和化学性质。有机硅可以抵抗潮湿、化学物质、高温、低温和紫外线辐射。有机硅具有许多独特的性能,可以润滑、密封、粘合、脱模、消泡、扩散和封装。由于这些和其他特性,有机硅聚合物被用于建筑、消费品、电子、能源、医疗保健和交通等应用中的数千种产品。使用有机硅可以减少一次能源需求并促进向可再生能源的过渡。
有机硅是世界上最重要和适应性的材料之一,用于数千种产品和应用中。硅和氧原子的骨干是有机硅化学的基础,允许形成硅氧烷。Siloxanes是基于硅,氧,氢和碳的原材料,是用于制造有机硅聚合物的关键构件。可以制作硅酮以抵抗水分,化学物质,热,冷和紫外线辐射。有机硅显示出许多独特的属性,这些特性可以润滑,密封,键,释放,defoam,sprine和封装。由于这些和其他属性,在诸如建筑,消费产品,电子,能源,医疗保健和运输等应用中,在数千种产品中使用了硅酮聚合物。
如果需要去除现有的固化/旧密封剂:通过切割/剥离/从表面上切除/刮擦多余的填缝剂尽可能多地去除。用于陶瓷瓷砖,大理石,Formica®,玻璃纤维等。:使用100%的矿物精神(松节油)†和非埋水式搜查垫。在表面隐藏区域上测试矿物精神†,以确保不会发生变色。如果确实发生了变色,请联系表面的制造商以进行进一步的帮助。对于玻璃表面:小心地使用持有人内的剃须刀刀片以尽可能地去除,然后应用矿物精神†。用毛巾或其他合适的清洁用具去除多余的东西,不会标记表面(例如非寄存垫)。用于硬塑料或彩绘表面:使用摩擦酒精†和柔软的布。请勿使用矿物精神†。用于多孔/粗糙表面(混凝土,砖,木材,墙纸):去除尽可能多的密封剂(与光滑的表面相同)。如有必要,请与矿物精神结合使用钢丝刷†。我们不建议使用钢丝刷从木面上去除密封剂,因为这样做可能会损坏木材。此外,如果木材上有任何类型的饰面,则不应使用矿物精神†。申请前在隐藏区域上测试溶剂。有关硅胶密封剂的特殊说明:没有物质可以溶解有机硅。如果您将硅胶重新申请到该区域,请卸下旧密封剂,然后清洁下面的区域。如果存在霉菌或霉菌,请涂擦酒精†。在重新申请硅树脂之前让该区域干燥。•需要适当准备的密封剂表面。以下是准备
欧盟 (EU) 已承诺实施一项雄心勃勃的太空政策,以促进其可持续和数字化转型。作为欧盟太空计划的支柱之一,欧洲地球观测 (EO) 系统“哥白尼”提供大气、海洋和陆地监测服务,以及气候变化、应急管理和安全服务。有机硅是太空技术的关键推动因素,有助于欧盟充分利用其在该领域的工业和科学能力。
通过使用散热器和有效的热界面材料来最大限度地降低封装中的热阻对于 LED 的长而可靠的使用寿命非常重要。Momentive 提供一系列室温/低温固化 TIM 和导热油脂,用作铝或 FR-4 底座和散热器之间的热界面。这些可修复材料可润湿热表面,可用于减少粘合线,并且由于它们是液体分配的,因此仅允许使用必要的量,从而为材料成本和生产率效益创造了机会。
许多软机器人组件需要高度可拉伸的导电材料才能正常运行。这些导电材料通常用作传感器或热响应材料的加热器。然而,可拉伸材料很少,它们可以承受软机器人通常经历的高应变,同时保持焦耳加热所需的电气特性(例如,均匀的电导率)。在这项工作中,我们提出了一种含有液体和固体夹杂物的硅树脂复合材料,它可以在经历 200% 的线性应变时保持均匀的电导率。这种复合材料可以铸造成薄片,使其能够包裹在热响应软材料周围,这些软材料在加热时会增加体积或可拉伸性。我们展示了这种材料如何为电控形状变化的软机器人致动器以及仅由电刺激驱动的全硅树脂致动系统开辟可能性。此外,我们还表明这种可拉伸复合材料可用作其他应用中的电极材料,包括线性响应高达 200% 应变且信号噪声接近于零的应变传感器。