Gil:事实上,它不仅是最大的,而且可以说是最古老的。它的起源可以追溯到 1917 年,当时成立了陆军密码局。战后,它位于曼哈顿,主要由民间管理。因此,研究的初始阶段都围绕数学和密码分析研究。数学用于编码信号,然后密码分析就是解码的方法。两者都是 NSA 所做的两件大事。但就更广泛的研究组合而言,超出数学范畴的研究组合是在 NSA 于 1952 年成立仅 18 个月后出现的,当时 NSA 顾问委员会说:“嘿,你们太封闭了。你们需要一个研究机构,从事非机密工作,并且远离主校区,在开放的环境中与行业和学术界互动。”因此,1956 年,物理科学实验室在学院公园成立。所以它位于马里兰大学校园内。它有几个不同的地点,其中一个现在是星巴克。但它有几个地点,现在在校园内。这实际上是一个专门研究组织的起源。从那时起,它就与 NSA 的广泛使命保持一致。我们进行科学研究以支持该任务,但研究是针对该任务的。因此,它并不涉及所有科学领域,而是涉及非常精选的领域。关于我们为何如此庞大的研究团队,另一个需要记住的重要因素是冷战时期发生的事情
将DC与NIRS结合起来可以计算氧气6的脑代谢率,并进一步了解健康7、8和病理条件下血红蛋白浓度与脑血流(CBF)变化之间的关系。9,10最近,我们和其他小组提出了使用DCS脉动CBF指数信号(PCBF I)来量化颅内压(ICP),临界关闭压力(CRCP),脉冲指数(PI)和脑抗血管抵抗指数(CVR I)的连续性和非inniNninvasine continally and Inninvasine conteriality。11 – 16 Despite the encouraging results, the low signal-to-noise ratio (SNR) of current DCS devices limits pCBF i to source- detector separations (SDsep) of up to 2.5 cm, which reduces brain sensitivity in adults, 17 and to achieve sufficient time-points within a pulsatile waveform, it requires cardiac-gated averaging of 50 arterial pulses, 11 which dampens the脉冲峰,并提供CRCP和CVR I估计为0.02至0.07 Hz,速率太低,无法研究大脑脉管系统的动态压力流关系。18要克服DCS噪声,增加SDSEP并以较少的平均恢复PCBF I恢复,我们提出了一种基于NIRS和DCS脉冲信号组合的新方法。由于在相同采样速率下的NIRS测量值通常检测到多个数量级的光子,因此NIR的SNR比DCS的SNR(19,20)好得多,允许测量脉冲血容量波形,并在长SDSEP(≥3cm)处具有高时间分辨率。PWA通常是指在短SDSEP上使用脉搏氧量设备测量的PPG波形的形态。21特别是,我们最近开发了一种称为Flexnirs的开源,可穿戴和无线NIRS设备,具有低噪声等效功率(NEP <70 fw∕P Hz),能够以高达266 Hz的采样率以高达266 Hz的采样率获取10个通道。22该设备的高SNR性能使我们能够在NIRS光掌术(PPG)的脉冲光吸光度下以3.3 cm sdsep(Nirs-Pppg)的速度吸收性(NIRS-PPG)与少数Beats Anever to beats Anirs to beative and Beative vellsaTile光吸光度(PPG),从而解决脉动血液量和其时间衍生物。23从表面PPG中提取的形态特征及其时间衍生物已在文献中进行了研究,通常包括PPG波轮廓的振幅,潜伏期和宽度。这些特征通常带有算法,这些算法在信号中找到局部最大值和最小值及其第一个至第三次衍生物。23 PWA量化了脉搏波的特性,以获取有关心血管态的信息,并揭示了特定特征与皮肤血管衰老,刚度和外周耐药性的相关性。24 - 27测量长SDSEP PPG及其时间导数的能力扩展了分析,以表征大脑血管,并通过弥漫性光学方法为研究脑健康打开了新的维度。28 - 30此外,当通过利用脉冲血容量和血流关系同时测量DC和NIR时,31 - 33,我们可以将Pul-Satile流入和流出和流出和模型PCBF I分开,并将模型作为NIRS-PPPG的线性贡献,以及它的首次衍生物[D(NIRS-PPPG)[D(NIRS-PPPG)/DT]。所得拟合的PCBF i-fit在DC上显示超过SNR,同时准确匹配DCS脉冲流,使我们能够在心脏频率下估计PI,CRCP和CVR I。为了验证该模型,我们与Flexnirs同时测量了12位健康受试者,并且在我们的实验室中可用的最先进的DCS原型,该原型在1064 nm处运行,并采用了超导纳米型单杆探测器(SNSPD)。SNSPD-DCS系统提供了> 16倍SNR的增加,而标准DCS技术,17,使我们能够在较大的分离处解决PCBF I,并使用较低的心脏门控平均。,我们对受试者进行了NIR和DCS测量,同时执行改变脑和系统生理的标准任务,并在各种条件下恢复了脉动和慢速变化的信号。
摘要—在这项工作中,我们展示了原子层沉积 (ALD) 单通道氧化铟 (In 2 O 3 ) 栅极环绕 (GAA) 纳米带场效应晶体管 (FET),该晶体管采用了后端制程 (BEOL) 兼容工艺。在 In 2 O 3 GAA 纳米带 FET 中,实现了 19.3 mA/µ m(接近 20 mA/µ m)的最大导通电流 (I ON ) 和 10 6 的开/关比,其通道厚度 (T IO ) 为 3.1 nm,通道长度 (L ch ) 为 40 nm,通道宽度 (W ch ) 为 30 nm,介电 HfO 2 为 5 nm。采用短脉冲测量来减轻超薄通道层中流动的超高漏极电流引起的自热效应。 In 2 O 3 FET 获得的创纪录高漏极电流比任何传统单通道半导体 FET 高出约一个数量级。这种非凡的漏极电流及其相关的导通状态性能表明 ALD In 2 O 3 是一种有前途的氧化物半导体通道,在 BEOL 兼容单片 3D 集成方面具有巨大的发展机会。
摘要 - 具有光学动力和数据遥测的基于最小的和无线近红外(NIR)的神经记录器是一种有希望的长期监测的有前途的方法,该方法具有最小的现状独立唱片仪之间的最小物理维度。但是,基于NIR的神经记录综合电路(IC)的主要挑战是在存在光引起的寄生寄生短路电流的情况下保持强大的操作。当信号电流保持较小以降低功耗时,尤其如此。在这项工作中,我们为电动机预测提供了一个容忍和低功率的神经记录IC,该记录可以在低调的300 µw/mm 2中充分发挥作用。,它以4.1噪声效率因子(NEF)伪抗抑制作用的放大器,芯片神经特征提取器和单个的Mote-Mote级增益控制,在38℃时达到了0.57 µW的最佳能力消耗。应用猴子的20通道预录的神经信号,IC可以预测用
用便宜的可再生能源在科罗拉多州收取一百万个电动汽车需要什么?到2030年,艾伦·贝斯特(Allen Best),科罗拉多州希望有将近一百万辆电动汽车。可以用可再生能源廉价地加油,但是只有在充满供应的情况下发生充电时,才能使用。那怎么会发生?这是Xcel Energy的试点计划的收费,这是涉及五名主要汽车制造商和最多600个电动汽车所有者的基本挑战。“这是一个非常创新的飞行员,”环境倡导组织Western Resource Advocates的运输电气化经理Aaron Kressig说。“该飞行员中使用的技术对我来说真的很令人兴奋。这是从其他许多公用事业在智能充电方面所做的事情迈出的一步。这样的事情最终可以扩大规模。”犹他州和其他地方的公用事业也面临着同样的挑战,即弄清楚如何管理快速
混合量子-经典算法是在噪声中尺度量子 (NISQ) 技术下实现量子计算最有前途的系统之一。在本文中,我们首先使用一种高效的基于拉格朗日的方法研究了一种服从冯诺依曼方程的密度矩阵的量子动力学算法。然后,我们用一种混合量子-经典算法考虑了用汉密尔顿集合描述的无序量子系统的集合平均的动力学。在最近的一项工作 [Phys. Rev. Lett. 120, 030403] 中,作者得出结论,由于无序平均值的性质,开放系统的动力学可以用汉密尔顿集合来模拟。我们研究了我们的算法,使用主方程形式的高效变分量子电路来模拟开放系统的非相干动力学(退相干)。尽管开放系统的演化是非幺正的,但我们的方法仍然适用于具有幺正量子操作的非相干动力学的广泛问题。
