1.4 GHz。十米射电阵列:该望远镜阵列由四个双偶极天线单元组成,使用 NASA 的 Radio JOVE 望远镜套件作为构建模块。望远镜的接收器设计为以 20.1 兆赫 (MHz) 运行,以便对木星-木卫一相互作用、太阳爆发和银河系的背景射电发射进行无线电观测。40 米射电干涉仪:三台 SPIDER 500A 望远镜用于模拟一个大小相当于 40 米碟形天线的射电干涉仪。该系统呈矩形不等边三角形,距离(不等边三角形的边)分别为 30、40 和 50 米。该阵列能够模拟直径为 40 米的单碟形天线的分辨率,其收集面积相当于直径为 8.7 米的天线。此配置中的合成波束测量值为 0.36°(21 弧分)。
自第二次世界大战以来,锂金属及其化合物的产量大幅增加。由于锂金属的比热容是所有固体元素中最高的,因此它已用于传热应用;然而,锂具有腐蚀性,需要特殊处理。这种金属已被用作合金剂,在有机化合物的合成中具有重要意义,并具有核应用。由于具有高电化学电位,它被列为电池阳极材料的领先竞争者。锂用于特殊玻璃和陶瓷。位于圣劳伦斯山的 200 英寸望远镜的玻璃。帕洛玛山含有锂作为次要成分。氯化锂是已知的最吸水的材料之一,它和溴化锂一样,用于空调和工业干燥系统。硬脂酸锂用作通用高温润滑剂。其他锂化合物用于干电池和储存
一个简单的事实,即诸如太阳和月亮之类的天体可能导致了许多人(例如,毕达哥拉斯)明显结论地球没有什么不同。望远镜的发明以查看相邻行星确认地球的圆形。eratosthenes在古埃及相距800公里的两点使用了太阳的阴影,在仲夏末日中午测得,首先结论地球是一个圆球,其次是约40,000公里的圆周,非常接近公认的价值。像费迪南德·麦哲伦(Ferdinand Magellan)和弗朗西斯·德雷克(Francis Drake)这样的探险家,他们绕着地球绕过地球,并没有争议地表明地球是一个地球。当然,从空间中对地球的最新观察证实了地球是圆形的。由于地球具有球形形状,因此意味着地球的其他层很可能会作为一系列同心层发生。
背景。下一代望远镜的选址是在望远镜首次发射前的几十年选定的。选址通常基于近期的测量结果,但该测量结果太短,无法解释观测条件的长期变化,例如由人为气候变化引起的变化。因此,对于典型寿命为 30 年的天文设施,了解气候演变以优化观测时间至关重要。目标。在本研究中,我们分析了八个站点的天文观测条件趋势。大多数站点要么已经拥有提供现场天气参数测量的望远镜,要么是下一代望远镜的候选地。为了精细地表示地形,我们使用高分辨率模型比对项目提供的最高分辨率全球气候模型 (GCM) 集合,该集合是欧盟“地平线 2020 PRIMAVERA”项目的一部分。方法。我们评估了仅大气和耦合的 PRIMAVERA GCM 历史模拟,并与现场测量和欧洲中期天气预报中心 1979-2014 年期间的第五代大气再分析 (ERA5) 进行了比较。然后使用 PRIMAVERA 未来气候模拟分析 2015-2050 年期间当前场地条件变化的预测。结果。在大多数站点,我们发现 PRIMAVERA GCM 在温度、比湿和可降水蒸气方面与现场观测和 ERA5 相比具有良好的一致性。PRIMAVERA 模拟这些变量的能力提高了对其预测的信心。对于这些变量,模型集合预测所有站点都呈上升趋势,这将导致天文观测条件与当前条件相比逐渐变差。另一方面,预测相对湿度、云量或天文观测没有显著趋势,与观测和重新分析相比,PRIMAVERA 不能很好地模拟这些变量。因此,这些预测的信心不大。结论。我们的研究结果表明,气候变化将对天文观测的质量产生负面影响,并可能增加因场地条件恶劣而造成的时间损失。我们强调,天文学家在选址和监测过程中必须纳入长期气候预测。我们表明高分辨率 GCM 可用于分析气候变化对下一代望远镜场地特征的影响。
8.参考文献 [1] M. Robberto 等人,“DMD 在天体物理研究中的应用”,Proc.SPIE 7210,新兴数字微镜设备系统和应用,72100A(2009 年 2 月 13 日)。[2] M. Kimura 等人,“用于 Subaru 望远镜的光纤多目标光谱仪 (FMOS)”,日本天文学会出版物,第 62 卷,第 5 期,第 1135-1147 页(2010 年 10 月 25 日) [3] A. Travinsky 等人,“用于太空多目标光谱仪应用的数字微镜设备的评估”,J. Astron。Telesc。Instrum。Syst.3(3) 035003 (2017 年 8 月 17 日)。[4] R. L. Davies 等人,“GMOS:GEMINI 多目标光谱仪”,Proc.SPIE 2871,今天和明天的光学望远镜 (1997 年 3 月 21 日)。[5] M. Robberto 等人,“SAMOS:一种多功能多目标光谱仪
随着太空交通的不断增加,探测和编目地球轨道上的小物体已成为太空界面临的日益严峻的挑战。光学系统在应对这一挑战中发挥着重要作用,它能够探测所有轨道上的物体。本文旨在评估所选光学技术对低地球轨道物体进行编目的潜力。从理论上估算了各个望远镜的探测能力,并与 Share My Space 运营的望远镜进行的观测结果进行了比较,并使用 StreakDet 软件进行了分析。多望远镜站的核心概念是光学探测的锥形栅栏。在各种观测网络配置中模拟了在一个月内传播的 83,000 个物体的统计群体的探测。结果表明,使用现成的望远镜组件可以编目 15,000 个大于 3 厘米的低地球轨道物体,使用新光学系统最多可以编目 53,000 个。
月球背面科学的潜力:由于月球背面不受地球无线电传输的影响,因此它是天文学家放置射电望远镜的理想位置。此次任务还包括在南极背面发射相当多的着陆器和探测车。例如,向南极-艾肯盆地发射样品返回任务将为有关月球内部的科学信息提供宝贵材料。 ITU-R RA.479-5 参考文献 [41] 中关于月球屏蔽区的内容指出:“300 MHz 至 2 GHz 之间的频率应保留给射电天文学”。ITU《无线电规则》第 22 条第 V 节 [39] 专门用于保护 SZM 中的射电天文学,要求与射电天文学进行协调,即使在 ITU《无线电规则》第 4.4 条框架内以不干扰为基础提出申请时也是如此。鉴于上述情况,我们在月球空间通信研究中必须考虑某些架构要求: