在这方面,在过去几年中,已经对基于灯笼的单分子杂志(SMM)进行了深入研究,目的是针对分子水平的杂志稳定和较高密度存储应用的稳定。[5,12–19]缓慢的松弛时间,高磁矩和灯笼的可靠地面状态使其非常适合分子自旋的应用。[5,12,13]灯笼驱动的SMM方法的逻辑扩展将是包含灯笼的定期网络的工程,该网络可以充当主动磁性信息单位。在过去的几十年中,金属分子方案已成为一种强大的策略,用于设计嵌入金属元件的功能性网状材料。[20–22]这种合成范式也已经在表面上开发,能够设计2D金属 - 有机设计,主要采用过渡和碱金属。[23–25]
周期驱动系统在科学和技术中无处不在。在量子动力学中,即使是少量的周期驱动自旋也会导致复杂的动力学。因此,了解此类动力学必须满足哪些约束是很有意义的。我们为每个周期数推导出一组约束。对于纯初始状态,受约束的可观测量是重复概率。我们使用约束来检测与未考虑的环境的不良耦合以及驱动参数的漂移。为了说明这些结果与现代量子系统的相关性,我们在捕获离子量子计算机和各种 IBM 量子计算机上通过实验展示了我们的发现。具体来说,我们提供了两个实验示例,其中这些约束超出了与已知单周期约束相关的基本界限。该方案可能用于检测无法通过经典方式模拟的量子电路中的环境影响。最后,我们表明,在实践中,测试 n 循环约束仅需执行 O(√n) 个循环,这使得评估与数百个循环相关的约束变得现实。
版权所有 © 2022 Rouse 等人。这是一篇开放获取的文章,根据知识共享署名 4.0 国际许可条款分发,允许在任何媒体中不受限制地使用、分发和复制,前提是对原始作品进行适当的署名。
超表面应用数量的不断增长以及其制造和特性的快速发展[30]促使人们开发出精确分析和设计超表面的方法。虽然全波数值解始终是一种选择,但分析工具可能更具吸引力,因为它们有助于设计并提供有关超表面底层物理的宝贵见解。对于每个单位晶胞由单个散射体组成的周期性超表面,即我们在此重点讨论的超表面类型(图1),有几种用于此目的的技术。首先,开发了可理解的超表面和超材料电路模型[31–33],这些模型易于在工业中使用,尤其是对于微波应用。第二种方法遵循均质化原理。它旨在用具有相同表面磁化率的表面替换有问题的超表面。[34–36]尽管这些方法对组件设计非常有帮助,但它们不足以描述所研究结构的内部物理特性,例如组成粒子的相互作用。此外,电路建模和均质化方法有时会涉及一些假设,这些假设会以牺牲准确性为代价来简化所研究的问题。第三种方法更多地来自“第一性原理”,旨在通过求和其组成粒子的响应,自下而上地构建二维阵列的响应。虽然这种自下而上的方法与最初提到的两种方法有一些共同之处,但它更通用、更灵活。它使大量设计更容易处理,包括毫米波和光学应用。[7,37–44] 在这种方法中,最好使用场的多极展开来讨论组成粒子的光学作用。[45–51] 在多极展开中,散射体的光学响应用一系列由外部照明和形成超表面的所有其他粒子的散射场引起的多极矩来表示。使用不断增加的
除草剂clopyralid的污染物(3,6-二氯-2-吡啶 - 羧酸,CLP)对生态系统构成了潜在的威胁。然而,普遍缺乏研究CLP对生物衍生过程扰动的研究,其生物反应机制尚不清楚。在此,对CLP的长期暴露进行了系统的研究,以探索其对硝化性能和动态微生物反应的影响。结果表明,CLP的低浓度(<15 mg/ L)最初引起严重的亚硝酸盐积累,而在长期适应后,CLP的浓度较高(35 E 60 mg/ L)没有进一步的影响。这项机械研究表明,CLP减少了亚硝酸盐还原酶(NIR)活性,并抑制了代谢活性(碳代谢和氮代谢),从而导致氧化应激和膜损伤,从而导致亚硝酸盐的积累。但是,经过80天以上的适应,几乎没有在60 mg/L Clp的情况下发现亚硝酸盐积累。提出,细胞外聚合物物质(EPS)的分泌在15 mg/l Clp时从75.03 mg/g VSS增加到60 mg/l Clp的109.97 mg/g VSS,从而增强了微生物细胞的保护和改善的NIR活性和改善的NIR活性和代谢活性。此外,Mi-Crobial社区的生物多样性和丰富性经历了U形过程。最初硝化和代谢相关的微生物的相对丰度最初降低,然后随着与EPS和N-酰基 - 糖烯内酯分泌有关的微生物的富集而回收。©2021作者。这些微生物保护了微生物免受有毒物质的影响,并调节了它们之间的相互作用。这项研究揭示了成功暴露于CLP后的硝化生物反应机制,并为分析和治疗含除草剂的废水提供了适当的指导。由Elsevier B.V.代表中国环境科学研究所,中国环境科学学院出版。这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。
摘要 - 认识到人类的感受在我们的日常交流中起着至关重要的作用。神经科学表明,不同的情绪状态在不同的大脑区域,EEG频带和时间邮票中表现出不同程度的激活。在本文中,我们提出了一种新颖的结构,以探索脑电图识别的内容丰富的脑电图特征。所提出的模块由PST注意表示,由位置,光谱和时间关注模块组成,以探索更具歧视性的EEG特征。特别是位置注意模块是为了捕获空间维度中不同情绪刺激的激活区域。频谱和时间注意模块分别分别分配了不同频带和时间切片的权重。我们的方法是自适应和有效的,可以作为模块中的插件插入3D卷积神经网络(3D-CNN)中。我们在两个现实世界数据集上进行实验。3D-CNN与我们的模块相结合实现了有希望的结果,并证明PST注意力能够捕获EEG的情感识别的稳定模式。索引术语:脑电图,注意力,情感识别,3D-CNN
在这里,我们展示了一个现实世界的软件项目,以讨论三个抽象层次,以区分 AI 软件解决方案上不同粒度的信息交换。虽然最低级别的抽象过于复杂,无法创建标准化词汇表,但最高级别的抽象对于许多问题案例来说过于粗糙,无法设计合适的算法。尽管如此,正如我们将展示的那样,这个最高级别的抽象仍然很重要,因为它是军事操作员和 AI 专家之间信息交换的最佳级别。最高级别的抽象由平铺的 AI 方案表示,称为 AI 周期表 (PTA)。我们建议基于 PTA 的新型引导工作流程,以支持军事人员和 AI 专家之间的交流,以利用自动化工作的成果。我们将证明 PTA 非常适合作为军事操作员和 ML 专家之间的沟通手段。在未来的工作中,可以检查是否应特别针对安全部队的要求改进现有的 PTA。
路易斯安那州健康健康计划咨询咨询2020年12月11日至25日,EPSDT周期时间表医疗补助先前通过了美国儿科学院(AAP)/BRIGHT FUXERS颁布的“预防小儿保健建议”周期时间表。 立即生效,医疗补助将不再维护单独的路易斯安那州医疗补助,并定期筛查,诊断和治疗(EPSDT)周期时间表,并将介绍提供者访问此处可用的AAP周期时间表。路易斯安那州健康健康计划咨询咨询2020年12月11日至25日,EPSDT周期时间表医疗补助先前通过了美国儿科学院(AAP)/BRIGHT FUXERS颁布的“预防小儿保健建议”周期时间表。立即生效,医疗补助将不再维护单独的路易斯安那州医疗补助,并定期筛查,诊断和治疗(EPSDT)周期时间表,并将介绍提供者访问此处可用的AAP周期时间表。
寻找化石燃料的绿色替代品可刺激光伏场中的搜索。硅是建造太阳能电池的最常用材料,这主要是因为其成本效果,但吸收光谱有限(尤其是在蓝色和紫外线区域),这是相对较低的冲击式标题极限(30%)。此外,硅太阳能电池的温度系数相当高,这意味着它们的效率随温度升高显示可测量的下降。多函数太阳能电池达到高达47%[1]的效率,但是很难构建,并且非常昂贵。氮化盐是一种有前途的材料,用于吸收多结太阳能电池中的高能光子或Si-GAN串联细胞中的高能光子[2],具有多个量子井(MQW)结构,显示出最佳性能[3]。MQW细胞在简单的P-N或P-I-N结构结构上显示出各种优势,这主要是由于可以在不存在的位错和相位分离问题的情况下生长较薄的Ingan层,这是GAN上生长的厚Ingan层的典型情况[4]。Ingan-GAN MQW结构已被证明在恶劣的环境中,在高激发密度和高温下[5,6]中也是可靠的[5,6],从而可以在无线电源传输系统和空间应用中使用[7]。这项工作的目的是了解在高温下将基于MQW INGAN的太阳能电池提交给高功率光和电应力时如何降解。