美国斯坦福大学 尽管动物飞行已有 3 亿年的历史,但人类对飞行的认真思考却只有几百年的历史,可以追溯到列奥纳多·达·芬奇 1,而人类成功飞行只是在过去 110 年内实现的。附图 7.1-7.4 对此进行了总结。在某种程度上,这与计算的历史相似。对计算的认真思考可以追溯到帕斯卡和莱布尼茨。虽然巴贝奇在 19 世纪曾试图制造一台可运行的计算机,但成功的电子计算机最终在 40 年代才实现,这几乎与第一架成功的喷气式飞机的开发同时发生。图 7.5-7.8 总结了计算机的早期历史。表 7.1 和 7.2 总结了超级计算机和微处理器发展的最新进展。尽管到 30 年代,飞机设计已经达到相当先进的水平,例如 DC-3(道格拉斯商用 3)和喷火式战斗机(图 7.2),但高速飞机的设计需要全新的复杂程度。这导致了工程、数学和计算的融合,如图 7.9 所示。
尽管动物飞行已有 3 亿年的历史,但对人类飞行的认真思考却只有几百年的历史,可以追溯到列奥纳多·达·芬奇 1,而人类成功飞行仅在过去 110 年内实现。附图 7.1-7.4 对此进行了总结。在某种程度上,这与计算的历史相似。对计算的认真思考可以追溯到帕斯卡和莱布尼茨。虽然巴贝奇在 19 世纪曾试图制造一台可用的计算机,但成功的电子计算机最终在 40 年代才实现,几乎与第一架成功的喷气式飞机的发展同时发生。图 7.5-7.8 总结了计算机的早期历史。表 7.1 和 7.2 总结了超级计算机和微处理器开发的最新进展。尽管到 30 年代,飞机设计已达到相当先进的水平,例如 DC-3(道格拉斯商用 3)和喷火式战斗机(图 7.2),但高速飞机的设计需要全新的复杂程度。这导致了工程、数学和计算的融合,如图 7.9 所示。
摘要 航空系统的安全水平极高,事故非常罕见,大多数坠机事件都会成为头条新闻。航空旅行不断扩大,航班数量的增加将需要大幅提高安全水平,以确保飞机事故的发生率保持在较低水平。正在研究数字数据链路和高级软件辅助操作员等新技术,以适应旅行的增长,同时将安全性提高到所需的水平。因此,人为错误的发生和预防是新技术应用设计和验证的主要和高度优先的问题。我们将简要回顾航空业所谓的“自动化”的经验教训以及该行业面临的挑战。数据链接新技术应用的研究和实验。将讨论空中交通管理和驾驶舱自动化。重点在于人类与未来技术之间的互动质量,这些互动在可能的操作应用的真实模拟过程中得到观察和测量。人类操作员的行为可以通过更先进的测量设备进行研究和记录,这些设备能够在使用这些系统时实现客观的性能和工作量测量。本文将说明和讨论对比主观和客观测量技术在“前进方向”决策中的作用和重要性,以及设计和验证过程。最后,将强调一些谬论以及对未来工作的启示。
摘要 航空系统的安全水平极高,事故非常罕见,大多数坠机事件都会成为头条新闻。航空旅行不断扩大,航班数量的增加将需要大幅提高安全水平,以确保飞机事故的发生率保持在较低水平。正在研究数字数据链路和高级软件辅助操作员等新技术,以适应旅行的增长,同时将安全性提高到所需的水平。因此,人为错误的发生和预防是新技术应用设计和验证的主要和高度优先的问题。我们将简要回顾航空业所谓的“自动化”的经验教训以及该行业面临的挑战。数据链接新技术应用的研究和实验。将讨论空中交通管理和驾驶舱自动化。重点在于人类与未来技术之间的互动质量,这些互动在可能的操作应用的真实模拟过程中得到观察和测量。人类操作员的行为可以通过更先进的测量设备进行研究和记录,这些设备能够在使用这些系统时实现客观的性能和工作量测量。本文将说明和讨论对比主观和客观测量技术在“前进方向”决策中的作用和重要性,以及设计和验证过程。最后,将强调一些谬论以及对未来工作的启示。
