2023 年 9 月,加拿大政府发布了《生成式人工智能使用指南》,其中为加拿大政府机构及其员工提出了建议。与近年来各组织发布的其他类似文件一样,该文件就透明度提出了建议,指出每当使用生成式人工智能生成内容时,都应告知读者“发给他们的消息是由人工智能生成的”。虽然本指南没有专门针对机器翻译的情况,但它确实提到翻译是生成式人工智能的潜在应用。因此,自然而然地出现了一个问题:无论在哪里使用机器翻译的文本,都应明确标记为人工智能生成的内容吗?在本立场文件中,我们详细研究了这个问题,目的是提出关于机器翻译的明确指导方针,不仅针对政府机构,也针对任何使用机器翻译技术的人。我们的主要结论是,机器翻译的文本确实是 AI 生成的内容。因此,应在使用它的所有地方明确标记。我们就这种标记可能采取的形式提出建议。我们还研究了在什么条件下可以删除或省略 MT 标记。
神经机器翻译模型再现其培训数据中存在的性别偏见,尤其是从性别中性语言(如英语)翻译成像西班牙语(如西班牙语)的语法性别语言时。本文通过将最先进的语言调整为性别平衡且合成生成的领域来调整性别偏见。我们的方法涉及使用以结构化提示为指导的大语言模型(LLM)的合成数据扩展,因为它对可扩展数据增强具有很大的好处。我们首先识别LLM和提示组合,该组合生成最准确,最少偏见的反事实句子。实验表明,当由更广泛的示例,逐步推理引导时,Llama 2-13B模型表现最好,并使用模型所需的相同语言来完成任务。使用此设置,我们增加了一个具有性别修饰句子的数据集,然后使用Lora来调整NLLB模型,Lora是一种参数效率的方法,仅训练模型参数的1.5%。我们的实验表明,在不影响翻译质量的情况下,性别偏差的统计学显着降低。较大的数据集结合了事实和合成反事实,并滤除低质量生成的示例有助于更有效地概括性别语言模式。这些结果具有更广泛的含义:首先,参数有效的微调可以以较小的计算成本减少性别偏见;其次,llm aigment的数据集可以匹配其他合成增强方法的有效性。
最近已经提出了几种不确定性估计方法,以用于机器翻译评估。尽管这些方法可以提供不信任模型预测的有用指示,但我们在本文中表明,大多数人倾向于低估模型的不确定性,因此,它们通常会产生不涵盖地面真理的误导性置信区间。我们建议使用保形预测,这是一种无分布的方法,可以在覆盖范围内获得具有理论上确定的固定性的置信区间。首先,我们证明了拆分的保形预测可以“正确”以前方法的置信区间,以产生所需的覆盖水平,并且我们在多个机器翻译评估指标和不确定性量化方法中揭示了这些发现。此外,我们以估计的置信区间重点介绍了偏见,并以不同属性(例如语言和翻译质量)的不平衡覆盖范围重新介绍了偏见。我们通过应用条件保形预测技术来解决每个数据子组的校准子集,从而导致均等覆盖范围。总体而言,我们表明,提供了对校准集的访问,共形预测可以帮助识别最合适的不确定性量化方法并调整预测的置信区间,以确保与不同属性有关。1
发展是在日本政府对Ainu作为土著人民的正式认可之后,这导致了全国对AINU语言课程和教育材料的资金(Sato,2012年)。许多AINU学习者今天将日语说日语;因此,实用的机器翻译是Ainu振兴不可或缺的一部分。但是,宫川(Miyagawa)(2023)先前的一项研究面临着挑战,包括在不同方言之间的区分和在翻译日常对话时遇到的困难。为了解决这些问题,我们采取了以下方法。首先,我们增强了语料库。以前的研究中的Corpora主要偏向有限地区的民间传说。我们从各种方言和操作中收集并数字化资源,以确保更大的多样性。我们还引入了一种新颖的方法,用于ainu-日语翻译,可以区分方言和域,从而减少不同区域或上下文之间的措辞混乱。在本文中,我们详细介绍了方法论的细节,介绍我们的结果,并讨论了我们发现的含义,这些含义可能有助于Ainu的振兴,这也可能适用于其他低水平语言。
抽象机器翻译在桥接语言障碍中起着至关重要的作用,但是产生适当的翻译仍然是一个挑战。增强学习技术与变压器模型的集成,以增强上下文相关翻译的产生。通过合并上下文策略梯度方法,一种考虑流利性和上下文的奖励功能,多代理强化学习,课程学习和交互式用户反馈,旨在提高机器翻译的质量。强化学习技术与变压器模型的集成提供了几种关键贡献。它使模型能够通过考虑源句子上下文,目标语言细节和用户偏好来优化翻译决策。拟议的奖励功能设计既包含传统的度量标准得分,又结合了上下文感知的指标,以促进流利性和连贯性。多代理强化学习增强了专门从事不同翻译方面的代理之间的协作。课程学习和用户反馈的互动学习有助于有效的培训和人为指导的微调。实验结果表明,与基线模型相比,翻译质量的显着改善。所提出的方法在评估指标(例如BLEU,流星,胭脂和TER)中获得了更好的分数。此外,定性分析强调了该模型在产生流利,准确和上下文相关的翻译方面的优势。总体而言,增强学习技术与变压器模型的集成在增强机器翻译系统方面有希望,使其更适应能力,以用户为中心,并且能够产生适当的上下文翻译。关键字1机器翻译,增强学习,变压器,交互式学习。
摘要 机器翻译 (MT) 与人工智能 (AI) 的结合显著提高了机器翻译系统的精确度,其翻译质量可与熟练的人工翻译相媲美。这一创新拓宽了人工智能机器翻译系统的适用性,吸引了各种用途的用户。本文探讨了以下领域:人工智能机器翻译,特别是谷歌翻译 (GT) 在英语作为外语 (EFL) 课堂中的应用。实证研究结果和最近的研究表明,学生越来越依赖机器翻译,特别是在英语不是母语的高等教育环境中。本研究的目的是深入了解在课堂上使用谷歌翻译的 EFL 学习者的实践、信念和目标。通过问卷调查以及前后测试收集了 234 名大学生的数据,以比较有无谷歌翻译帮助的写作草稿的质量。研究结果与之前在世界各地进行的研究结果一致,这些研究强调了人工智能机器翻译不仅可以提升学生的学习体验,还可以培养更多独立学习者的巨大潜力。研究还表明,学生对 GT 持积极态度,并采用多种搜索策略来解决各种与语言相关的挑战。关键词:人工智能、英语作为外语、谷歌翻译、机器翻译、写作。引用 | Alharbi,W.(2023 年)。人工智能机器翻译在 EFL 课堂中的使用和滥用:一项探索性研究。教育与电子学习研究杂志,10 (4),689–701。10.20448/jeelr.v10i4.5091 历史记录:收到日期:2023 年 7 月 31 日修订日期:2023 年 9 月 20 日接受日期:2023 年 10 月 4 日出版日期:2023 年 10 月 24 日许可:本作品已获得知识共享署名 4.0 许可出版商:亚洲在线期刊出版集团
单词嵌入是这种增强印象的典型示例。在密集培训后,“值”归因于多个级别的单词,每个单词都获得了一组独特的坐标。让我们以“ hotpot”一词。该程序通过详细分析使用该单词的各种上下文来归因于“热点”。作为“ hotpot”通常是在“饮食”的背景下使用的,“ hotpot”的坐标位于相当接近“进食”的坐标。“肉汤”的坐标也位于附近,也适用于“烹饪”,“牛肉”,“油”等的坐标。因此,在许多示例的基础上,该程序知道某些单词通常共享特定的上下文。因此,“ hotpot”和“饮食”之间的联系将比“ hotpot”和“食谱”之间的联系更强。这仅仅是因为“热点”和“饮食”一词在数据集中经常发现。但是,出于相同的原因,“ hotpot”和“食谱”之间的联系仍然比“ hotpot”和“跳投”之间的联系要强得多 - 在同一句子中找到“ hotpot”和“跳投”一词相对较少。
近年来,由于深度学习方法的出现,机器翻译 (MT) 得到了迅猛发展,而神经机器翻译 (NMT) 则显著提高了自动翻译的质量。虽然大多数工作涵盖了技术、法律和医学文本的自动翻译,但机器翻译在文学文本中的应用以及人类在这一过程中的作用尚未得到充分探索。为了弥补这一研究不足领域的空白,本文介绍了一项研究的结果,该研究旨在评估三种机器翻译系统对两种不同文学体裁、两部小说(乔治·奥威尔的《1984》和简·奥斯汀的《傲慢与偏见》)和两首诗(艾米莉·狄金森的《我感受到了大脑中的葬礼》和玛格丽特·阿特伍德的《海妖之歌》)的性能,这代表了不同的文学时期和时间线。评估通过自动评估指标 BLEU 进行,以客观评估机器翻译系统在每种体裁中的表现。本研究还概述了其局限性。
随着解码步骤的数量增加,迭代非自回旋变压器的计算益处减小。作为一种补救措施,我们介绍了DI仍然是Untiple S Teps(Dims),这是一种简单而有效的蒸馏技术,以减少达到一定的翻译质量所需步骤的数量。截止的模型享有早期迭代的计算益处,同时从几个迭代步骤中保留了增强性。暗示着两个模型,即学生和老师。在多个解码步骤后,在老师通过缓慢移动的平均值跟随学生的同时,对学生进行了优化,以预测老师的输出。移动平均线使教师的知识更新,并提高了老师提供的标签的质量。在推断期间,学生用于翻译,并且不添加其他构成。我们验证了DIMS对在WMT'14 DE-EN的蒸馏和原始验证上获得7.8和12.9 BLEU点改进的各种模型的有效性。此工作的完整代码可在此处提供:https://github.com/ layer6ai-labs/dims。