机器化和人工智能(AI)已成为现代媒体生态系统的组成部分。本文旨在描述这些技术的当前状态及其在更新和现代化新闻业中的作用。它介绍了有关机器人技术和AI对新闻实践的影响的信息,确定了AI对新闻业未来的潜在后果,并讨论了这些技术的日益影响。尽管兴趣越来越高,但AI对新闻业和我们的信息环境的影响仍然很少。也没有充分关注新闻业对科技公司对AI的影响。本文考虑了新闻机构中AI的结构含义,研究了AI在社论,商业和技术领域中的使用。得出的结论是,AI技术将增强而不是取代记者的工作,而人工智能不会对专业新闻业构成威胁。
我相信,在个人学习方面,人工智能作为传统教育方法的补充具有巨大潜力。然而,除了潜力之外,人工智能的快速发展还引发了许多道德问题,这些问题往往解决得太晚,而且程度有限。
4 md.devendran@gmail.com摘要:鸟类鉴定在生物多样性保护和生态学研究中起着至关重要的作用,为栖息地健康和物种分布提供了见解。识别鸟类物种的传统方法是时间密集型,容易出现人为错误,因此需要自动解决方案。这个项目是使用深度学习的鸟类识别,提出了一个先进的系统,以利用深度学习的力量准确地从图像中识别鸟类。该系统利用卷积神经网络(CNN),以其在图像分类任务方面的熟练程度而闻名。一个包含多种鸟类图像的数据集进行了预处理并增强,以增强模型的鲁棒性和泛化。模型架构旨在提取复杂的特征,即使在诸如不同的照明条件,遮挡或类似物种的外观等挑战性的情况下,也可以准确识别。使用准确性,精度,召回和F1得分等指标评估模型的性能,以确保全面验证。结果表明,对传统机器学习方法的准确性改善了,这表明了物种识别中深度学习的潜力。该项目对野生动植物监测,生态研究和教育工具的应用有望,从而促进了意识和保护工作。未来的工作可能包括将系统集成到移动应用中,或将其部署在现场条件下的实时鸟类识别。
摘要:心血管心律失常确实是全球最普遍的心脏问题之一。在本文中,主要目标是开发和评估自动分类系统。该系统采用了电解图(ECG)数据的全面数据库,特别着重于改善少数心律失常类别的检测。在这项研究中,重点是在心律不齐检测的背景下研究三种不同监督机器学习模型的性能。这些模型包括支持向量机(SVM),逻辑回归(LR)和随机森林(RF)。使用真正的患者心电图(ECG)记录进行了分析,这在临床环境中是一种更现实的情况,在临床环境中,ECG数据来自各种患者。该研究根据四个重要指标评估了模型的性能:准确性,精度,召回和F1得分。彻底实验后,结果强调,随机森林(RF)分类器在实验中使用的所有指标中的其他方法都优于其他方法。该分类器的精度令人印象深刻,表明它在准确检测不同患者收集的各种心电图信号中的心律不齐方面有效。
摘要 人工智能 (AI) 是一门科学,它涉及开发模仿人类智能的机器。机器学习 (ML) 是人工智能的一个子域,其中机器可以自动从数据中学习,而无需明确编程。农业不断受到压力,以用更少的资源生产更多。AI 和 ML 技术能够通过分析农业数据来优化资源利用率。它通过预测各种输入参数和预测作物的收获后寿命改变了当今农业的面貌。本章讨论了可用的不同 AI 和 ML 技术以及它们如何在农业生命周期的不同阶段使用。本章涵盖了农业中需要 AI 和 ML 的广泛领域。它包括土壤、灌溉和疾病管理。本章还介绍了人工智能在植物表型组学领域的重要性。本章讨论了地理信息系统 (GIS) 和遥感与人工智能相结合的可能用途。
大数据是一种变革性的力量,它重塑了我们收集、处理和从庞大而复杂的数据集中获取见解的方式 [1]。在我们日益数字化的世界中,信息以前所未有的速度生成,从社交媒体、传感器、电子商务交易等来源产生了海量数据 [2]。这种数据爆炸式增长催生了“大数据”一词,它指的是数据集非常庞大、多样且快速变化,以至于传统数据处理方法不足以有效处理它们。此外,大数据为新技术和工具的发展铺平了道路,例如数据湖、NoSQL 数据库以及 Hadoop 和 Spark 等分布式计算框架。这些创新使数据处理和分析的访问变得民主化,使更广泛的受众更容易获得它。大数据本身也带来了一系列挑战。隐私和安全问题至关重要,因为敏感信息的收集和存储引发了道德问题。此外,管理和处理大型数据集需要大量的计算资源,从而导致可扩展性和成本问题 [3]。大数据代表着一种变革力量,正在重塑企业、政府和研究人员的运作方式。它为洞察和创新提供了前所未有的机会,但它
农用无人机集机器人、人工智能、大数据、物联网等技术于一体,被广泛应用于播种、地块监测、作物病虫害检测、农药化肥喷洒等各类农业作业,大大提高农业生产效率、解放劳动力(Kim et al.,2019),正在成为精准农业航空领域的一股生力军(Wang et al.,2019)。与传统农业机械相比,农用无人机具有体积小、重量轻、便于运输,飞行控制灵活等特点,具有作业精准、高效、环保、智能、使用方便等特点。但很多时候,飞行过程中农用无人机载荷的实时变化会影响其速度、精度和飞行轨迹稳定性。徐建军等(2019)指出,农用无人机在作业过程中应时刻保持良好的飞行姿态,提高作业效率。魏等提出了一种使用 PID 控制器和鲁棒 TS 模糊控制方法实现 AUAV 飞行轨迹稳定性的飞行动力学模型。对于不同的飞行条件,该模型可以在飞行路径中实现一定的稳定性,以抵抗负载扰动。
