摘要 轨迹优化是航空运输和空中交通管理的一个主要研究课题,因为它对乘客、航空公司和整个环境都有深远的影响,从而对航空运输的感知价值和成本也有深远的影响。虽然人们很好地理解了优化飞行途中部分的挑战,但对最后一部分,即进近和着陆的关注相对较少。在这里,我们展示了如何使用开放的大规模飞机轨迹数据集来表征飞机降落在机场的效率,通过在 10,000 英尺以下飞行的时间和距离来测量。产生的图像高度异质,在低空停留的时间从苏黎世的平均 10 分钟到伦敦希思罗机场的 16 分钟不等。抵达同一机场的航班也会经历截然不同的时间,例如伦敦希思罗机场的到达时间从 12 分钟到 20 分钟不等,具体取决于交通量、一年中的时间和一天中的时间,以及与其他交通模式和机场的互动等因素。从更一般的角度来看,本文说明了如何利用大型数据集的可用性来提高我们对系统实际行为的理解,尤其是其与计划的偏差。
摘要 轨迹优化是航空运输和空中交通管理的一个主要研究课题,因为它对乘客、航空公司和整个环境都有深远的影响,从而对航空运输的感知价值和成本也有深远的影响。虽然人们很好地理解了优化飞行途中部分的挑战,但对最后一部分,即进近和着陆的关注相对较少。在这里,我们展示了如何使用开放的大规模飞机轨迹数据集来表征飞机降落在机场的效率,通过在 10,000 英尺以下飞行的时间和距离来测量。产生的图像高度异质,在低空停留的时间从苏黎世的平均 10 分钟到伦敦希思罗机场的 16 分钟不等。抵达同一机场的航班也会经历截然不同的时间,例如伦敦希思罗机场的到达时间从 12 分钟到 20 分钟不等,具体取决于交通量、一年中的时间和一天中的时间,以及与其他交通模式和机场的互动等因素。从更一般的角度来看,本文说明了如何利用大型数据集的可用性来提高我们对系统实际行为的理解,尤其是其与计划的偏差。
12:17 时,在 EPWA 机场着陆过程中,机组使用备用起落架放下系统执行了起落架放下程序。但是,在预计时间之后,起落架并未放下。机组根据 QRH 检查了程序执行的正确性,并再次尝试放下起落架。使用备用系统第二次尝试放下起落架失败后,放弃了着陆进近。12:22 时,机组向 ATC 报告无法放下起落架,并请求运营商的 MCC 协助。
12:17 时,在 EPWA 机场着陆过程中,机组使用备用起落架放下系统执行了起落架放下程序。但是,在预计时间之后,起落架并未放下。机组根据 QRH 检查了程序执行的正确性,并再次尝试放下起落架。使用备用系统第二次尝试放下起落架失败后,放弃了着陆进近。12:22 时,机组向 ATC 报告无法放下起落架,并请求运营商的 MCC 协助。
航空分为三种类型:军用航空、商用航空和通用航空。军用航空受性能需求驱动——速度、雷达、隐身、短距或垂直起飞。商用航空强调安全性、可靠性和效率。通用航空最重视降低航空资本成本,以允许小公司和个人飞行,这需要在性能和效率之间做出权衡。虽然每种类型都各不相同,但它们都以不同的方式为国防能力做出贡献。这三种类型都涉及航空航天技术,并经常引发对平台和车辆的讨论。然而,每种类型的航空也都以复杂的系统和流程为基础。军队需要不断训练、维持和创新,以满足其战略目标。商用飞机制造商和商业航空公司受到国家安全委员会的严格监管,受到主要机场着陆时段可用性和国家间国际协议的限制,并在市场上面临持续的竞争。通用航空依靠众多较小的机场和公司来支持无数独立参与者,而不会干扰军事或商业航空。
航空分为三种类型:军用航空、商用航空和通用航空。军用航空受性能需求驱动——速度、雷达、隐身、短距或垂直起飞。商用航空强调安全性、可靠性和效率。通用航空最重视降低航空资本成本,以允许小公司和个人飞行,这需要在性能和效率之间做出权衡。虽然每种类型都各不相同,但它们都以不同的方式为国防能力做出贡献。这三种类型都涉及航空航天技术,并经常引发对平台和车辆的讨论。然而,每种类型的航空也都以复杂的系统和流程为基础。军队需要不断训练、维持和创新,以满足其战略目标。商用飞机制造商和商业航空公司受到国家安全委员会的严格监管,受到主要机场着陆时段可用性和国家间国际协议的限制,并在市场上面临持续的竞争。通用航空依靠众多较小的机场和公司来支持无数独立参与者,而不会干扰军事或商业航空。