过去几年中,量子信息论的最新发展强烈推动了复杂量子现象的表征。在这样的框架中,一个关键概念就是纠缠。纠缠除了被认为是量子计算和通信任务的基本资源 [1] 之外,还被用来更好地表征不同多体量子系统在相关哈密顿量的某些特征参数发生变化时的临界行为;后一种现象被称为量子相变 (QPT) [2]。事实上,人们还没有完全深入理解 QPT 的普遍性质。在这种情况下使用纠缠的特殊之处在于,作为量子关联的单一直接测度,它应该允许对 QPT 进行统一处理;至少,每当发生的 QPT 归因于系统的量子性质时,这总是在 T 0 时,因为不存在热涨落。 [3] 中首次描述了自旋 1=2 链中单自旋或双自旋纠缠与 QPT 之间的关系,其中注意到并发度的导数在 QPT 的对应性上表现出发散,并具有适当的标度指数。随后在 [4] 中研究了 L 自旋块的纠缠及其在表现出临界行为的自旋模型中的标度行为。最近在 [5] 中解决了通过纠缠来表征费米子系统基态相图的问题,其中展示了如何通过研究单点纠缠来重现已知(数值)相图的相关特征。虽然这是一个有希望的起点,但仍需澄清哪些量子关联导致了 QPT 的发生:是两点还是共享点(多部分),是短程还是长程。事实上,要回答上述问题,需要对任何两个子系统之间的纠缠进行详尽的研究。如果子系统只有 2 个自由度,则共生性可以正确量化量子关联 [6]。一个概括
无线和移动通信技术的进步促进了移动医疗 (m-health) 系统的发展,以寻找获取、处理、传输和保护医疗数据的新方法。移动医疗系统提供了应对日益增多的需要持续监测的老年人和慢性病患者所需的可扩展性。然而,设计和运行带有体域传感器网络 (BASN) 的此类系统面临双重挑战。首先,传感器节点的能量、计算和存储资源有限。其次,需要保证应用级服务质量 (QoS)。在本文中,我们整合了无线网络组件和应用层特性,为移动医疗系统提供可持续、节能和高质量的服务。特别是,我们提出了一种能量成本扭曲 (ECD) 解决方案,它利用网络内处理和医疗数据自适应的优势来优化传输能耗和使用网络服务的成本。此外,我们提出了一种分布式跨层解决方案,适用于网络规模可变的异构无线移动医疗系统。我们的方案利用拉格朗日对偶理论,在能源消耗、网络成本和生命体征失真之间找到有效的平衡,以实现对延迟敏感的医疗数据传输。仿真结果表明,与基于均等带宽分配的解决方案相比,所提出的方案实现了能源效率和 QoS 要求之间的最佳平衡,同时在目标函数(即 ECD 效用函数)中节省了 15%。
赞助人 前任已故女王伊丽莎白二世(等待王室联系以决定未来) 会长 奥斯特茅斯的威廉姆斯勋爵和尊敬的牧师 副会长 布鲁斯·卡梅伦牧师 理查德·克拉克博士 约翰·戴维斯牧师 阿马郡的埃姆斯勋爵(2023 年 7 月 23 日辞职) 艾伦·哈珀博士 OBE 迈克尔·杰克逊博士 比尔·拉蒂默博士 巴里·摩根牧师 帕姆·罗兹牧师和尊敬的牧师 约翰·森塔穆 琼·辛普森 马克·斯特兰奇 罗伊·托顿 迈克尔·特恩布尔牧师 贾斯汀·韦尔比牧师和尊敬的牧师 受托人和董事会 主席:斯蒂芬·科特雷尔牧师和尊敬的牧师(2022 年 11 月 28 日辞去受托人和主席职务) 主席:古利·弗朗西斯-德卡尼牧师(曾任副主席,2020 年 11 月 28 日被任命为主席) 2022) 名誉财务主管:约翰·惠特菲尔德 Alan Abernethy Trevor Douglas 牧师(2022 年 8 月 23 日辞职) Ravi Gidoomal(2023 年 1 月 18 日任命) Robert Gillies 博士牧师(2022 年 11 月 28 日辞职) Kathy Green 修女(2023 年 3 月 2 日辞职) Lusa Nsenga-Ngoy 牧师(2022 年 8 月 4 日辞职) Sol Osagie 博士(2023 年 1 月 18 日任命) Joanna Penberthy 牧师(2023 年 8 月 3 日辞职) Peter Rouch Patricia Russell 牧师(2023 年 1 月 18 日任命) Rosie Slater-Carr(2022 年 10 月 7 日任命) Karen Webb 修女(2022 年 11 月 28 日辞职,2023 年 1 月 18 日重新任命) 2023) 安德鲁·佩恩上尉 CA 凯伦·韦斯特牧师(任命于 2023 年 1 月 18 日) 首席执行官 彼得·鲁奇博士 牧师 公司秘书 罗宾·韦伯 高级领导团队 彼得·鲁奇博士 首席执行官 裘德·戴维斯牧师 社区和职业主任 丹·莱恩 筹款和通讯主任(任命于 2023 年 5 月 15 日) 蒂莫西·林博士 组织发展主任 费伊·波普汉姆 组织发展副主任 罗宾·韦伯 财务和服务主任 内维尔·威勒顿上尉 CA 宣教运营主任
任何计算设备的物理实现,要想真正利用量子理论 [1] 提供的额外能力,都是极其困难的。原则上,我们应该能够在具有明确定义状态空间的系统上执行长相干量子操控(门控)、精确量子态合成以及检测。从一开始,人们就认识到,最大的障碍来自于任何现实量子系统不可避免的开放性。与外部(即非计算)自由度的耦合破坏了量子演化的幺正结构,而这正是量子计算 (QC) 的关键因素。这就是众所周知的退相干问题 [2]。通过量子纠错所追求的主动稳定可以部分克服这一困难,这无疑是理论 QC 的成功 [3]。然而,由于需要低退相干率,目前量子处理器的实验实现方案都是基于量子光学以及原子和分子系统 [1]。事实上,这些领域极其先进的技术已经可以实现简单量子计算机中所需的操作。然而,人们普遍认为,量子信息的未来应用(如果有的话)很难在这样的系统中实现,因为这些系统不允许大规模集成现有的微电子技术。相反,尽管“快速”退相干时间存在严重困难,但固态量子计算机实现似乎是从超快光电子学 [4] 以及纳米结构制造和表征 [5] 的最新进展中获益的唯一途径。为此,主要目标是设计具有“长”退相干时间(与典型的门控时间尺度相比)的量子结构和编码策略。第一个定义明确的基于半导体的量子通信方案 [6] 依赖于量子点 (QD) 中的自旋动力学;它利用了自旋自由度相对于电荷激发的低退相干性。然而,所提出的操纵
如今,可再生能源 (RES) 在生产大量电力和减少二氧化碳及其他温室气体排放方面发挥着重要作用。最重要的 RES 之一是光伏 (PV) 技术:事实上,它需要的安装和维护成本较低,并且由于结构的模块化和有限的安装空间,最适合城市一体化 [1]。在此背景下,近零能耗建筑 (nZEB) 的概念得到了充分构建。欧盟委员会通过 2010/31/EU 指令 [2] 引入了这一术语,并在国家层面定义了增加 nZEB 数量的适当措施。特别是,在 nZEB 中,能源消耗必须主要由位于现场或附近的 RES 覆盖。此外,欧盟成员国确保到 2020 年 12 月 31 日,所有新建建筑都将成为 nZEB。首先,大学应该积极参与 nZEB 框架,因为它们具有相关的社会经济影响 [3-4]。事实上,一些大学已经朝着这个方向发展,重点研究可能的改造以降低现有学术建筑的能耗 [5-7]。莱里达大学(西班牙)、欧柏林学院(美国俄亥俄州)和澳大利亚联邦科学与工业研究组织能源中心(纽卡斯尔,澳大利亚)都已实现现有建筑的样本。[8] 中报告了其他 nZEB 学校和用于学术目的的可持续建筑的例子。[9] 分析了瑞典住宅建筑的自给自足率,重点关注用于此目的的最佳电池技术。相反,[10] 讨论了配备电池储能系统的德国商业建筑的自消耗和自给自足。[11] 和 [12] 几项基于国内 nZEB 的研究,重点研究了取决于电池大小的自给自足率。
• 虽然新的损害函数是一项重大改进,但 NGFS 情景在物理风险建模方面仍然存在一些局限性。这些情景并未声称能够捕捉气候变化的详尽影响(例如临界点的影响)。在使用 NGFS 情景和损害函数结果时应始终保持谨慎,尤其是考虑到这些预测存在很高的不确定性。因此,这些情景不应被视为对气候行动机会进行成本效益分析的合适独立工具。
本出版物为国内机构部门和整体经济提供了资产负债表。记录了由联邦统计办公室计算的非财务资产,以及由德意志政府银行编制的金融资产和负债。方法论基础始终是2010年欧洲帐户体系(ESA 2010)。这个统计框架对欧盟的所有国家都具有约束力,自2014年9月以来,一般规则将总资产分解为非金融资产和金融资产。此外,它还包含统一分类非金融资产,金融资产和负债以及机构部门的规定。以下这两个组成部分的以下合并以形成综合资产负债表,或多或少地完整地了解了当前统计记录的资产,无论是在部门层面还是在整个经济中。仅在非财务资产的领域发生,因为在ESA 2010中定义的所有非财务资产类别都不可用。相应的数据均可用于库存或贵重物品,也不适用于土地以外的非生产资产,例如底土资产,水资源等。
什么是AD科学索引(Alper-Doger科学指数)?由穆拉特·阿尔珀(Murat Alper and Assoc)博士于2021年开发。CihanDöğer博士,AD科学指数是一个独立且国际排名的系统,可对科学家和机构的学术表现进行多维评估。 该系统是原始的学术排名,详细的分析和比较结果,是指导旨在提高科学贡献和个人研究人员和机构的科学贡献和生产力的重要资源。 AD科学索引分析了来自13个主要学术领域和197个学科的2.444.182科学家和24.482个机构的数据,涵盖了221个国家,使其成为其最广泛的基于样本的研究之一。 利用来自Google Scholar并经过严格多阶段过滤过程的数据,该系统根据总和近六年的H-索引,i10-索引和引用数量评估了填充物,从而提供了对学术生产力的全面评估。CihanDöğer博士,AD科学指数是一个独立且国际排名的系统,可对科学家和机构的学术表现进行多维评估。该系统是原始的学术排名,详细的分析和比较结果,是指导旨在提高科学贡献和个人研究人员和机构的科学贡献和生产力的重要资源。AD科学索引分析了来自13个主要学术领域和197个学科的2.444.182科学家和24.482个机构的数据,涵盖了221个国家,使其成为其最广泛的基于样本的研究之一。利用来自Google Scholar并经过严格多阶段过滤过程的数据,该系统根据总和近六年的H-索引,i10-索引和引用数量评估了填充物,从而提供了对学术生产力的全面评估。
残疾儿童和学校官员之间关于残疾儿童特殊教育的争议正在以更大的频率到达法院。”尽管《残疾人教育法案》(以下简称“想法”)和相关法规的绝大多数争议仅限于针对特定儿童的特殊教育计划的制定或实施,但一些争议暗示了全州范围内的关注。在这种情况下,残疾儿童的父母还可以针对“州教育机构”(SEAS)3(除了或代替当地学区(地方教育机构或Leas)外)进行。4此类诉讼中的股份非常高,其影响超出了直系政党。此外,知情的观察者预测,针对海洋的行动将更频繁地发生。,例如,查尔斯·韦瑟利(Charles Weatherly)和里德·马丁(Reed Martin),著名的特殊教育律师