任何为 3 名或以上与照料者无血缘或婚姻关系的儿童提供照料的人都必须持有有效的社区护理机构执照。执照官员会进行监督检查,并调查持照儿童保育机构可能不符合省级执照条例规定的最低健康和安全标准的投诉。此公开名单中的持照儿童保育机构根据《儿童保育条例》(截至 2011 年 12 月 1 日)分类如下:
摘要:货运业预计将保持甚至增强其在主要现代经济体中的基础性作用,因此,采取行动限制日益增长的环境压力迫在眉睫。使用电力是实现运输脱碳的主要选择;在重型车辆领域,它可以以不同的方式实现:除了全电池动力系统外,电力还可用于供电给接触网道路,或可以化学方式储存在液体或气体燃料(电子燃料)中。虽然目前的欧盟立法采用了从油箱到车轮的尾气排放方法,可实现所有直接使用电力的零排放,但从油井到车轮 (WTW) 方法可以考虑使用可持续燃料(如电子燃料)的潜在好处。在本文中,我们对使用电力为重型车辆供电的选项进行了基于 WTW 的比较和建模:电子燃料、电子液化天然气、电子柴油和液态氢。结果表明,直接使用电力可以节省大量温室气体 (GHG),而使用低碳强度电力生产电子燃料也可以节省大量温室气体。虽然大多数研究只关注绝对的温室气体减排潜力,但考虑新基础设施的必要性以及某些方案的技术成熟度对于比较不同的技术至关重要。本文对此类技术和非技术障碍进行了评估,以比较重型行业的替代途径。在可用的选项中,使用直接使用、能量密集型液体燃料的灵活性代表了脱碳的明显且巨大的直接优势。此外,本文采用的新方法使我们能够量化使用电子燃料作为化学储存的潜在好处,这种化学储存能够从可变可再生能源的生产峰值中积累电能,否则这些电能会因电网限制而被浪费。
• 虽然新的损害函数是一项重大改进,但 NGFS 情景在物理风险建模方面仍然存在一些局限性。这些情景并未声称能够捕捉气候变化的详尽影响(例如临界点的影响)。在使用 NGFS 情景和损害函数结果时应始终保持谨慎,尤其是考虑到这些预测存在很高的不确定性。因此,这些情景不应被视为对气候行动机会进行成本效益分析的合适独立工具。
无线和移动通信技术的进步促进了移动医疗 (m-health) 系统的发展,以寻找获取、处理、传输和保护医疗数据的新方法。移动医疗系统提供了应对日益增多的需要持续监测的老年人和慢性病患者所需的可扩展性。然而,设计和运行带有体域传感器网络 (BASN) 的此类系统面临双重挑战。首先,传感器节点的能量、计算和存储资源有限。其次,需要保证应用级服务质量 (QoS)。在本文中,我们整合了无线网络组件和应用层特性,为移动医疗系统提供可持续、节能和高质量的服务。特别是,我们提出了一种能量成本扭曲 (ECD) 解决方案,它利用网络内处理和医疗数据自适应的优势来优化传输能耗和使用网络服务的成本。此外,我们提出了一种分布式跨层解决方案,适用于网络规模可变的异构无线移动医疗系统。我们的方案利用拉格朗日对偶理论,在能源消耗、网络成本和生命体征失真之间找到有效的平衡,以实现对延迟敏感的医疗数据传输。仿真结果表明,与基于均等带宽分配的解决方案相比,所提出的方案实现了能源效率和 QoS 要求之间的最佳平衡,同时在目标函数(即 ECD 效用函数)中节省了 15%。
发件人:海军记录更正委员会主席 收件人:海军部长 主题:海军记录 ICO 前成员审查,美国海军,XXX-XX- 参考:(a) 第 10 章 USC§1552(b) 2022 年联合旅行条例 (JTR) 附件:(1) DD 表格 149 及附件 (2) 当事人的海军记录 1. 根据参考 (a) 的规定,当事人(以下简称为请求人)向海军记录更正委员会(委员会)提交了附件 (1),要求更正他的海军记录,以显示请求人已获得其个人采购移动(PPM)的报销。 2. 委员会由 、 和 组成,于 2023 年 4 月 25 日审查了请愿人的错误和不公正指控,并根据其规定,确定应根据现有的记录证据采取下述纠正措施。委员会考虑的文件材料包括附件、请愿人海军记录的相关部分以及适用的法规、条例和政策。 3. 在向委员会提出申请之前,请愿人已用尽海军部现行法律和法规规定的所有行政补救措施。委员会审查了与请愿人的错误和不公正指控有关的所有记录事实,发现如下:a. 请愿人以光荣服役身份退伍,并在完成所需的现役后获得了 2012 年 12 月 6 日至 2022 年 12 月 11 日期间的现役解除或退伍证书(DD 表格 214)。b. 2022 年 12 月 21 日,请愿人在驻扎期间收到正式的离职令(BUPERS 命令:3552),离职生效日期为 2022 年 12 月。请愿人选择的旅行地点是,离职生效日期为 2022 年 12 月 27 日。c. 2023 年 4 月 20 日,NAVSUP 诺福克舰队后勤中心通知 BCNR,联合旅行条例第 051302 A 段规定,在签发永久驻地变更命令之前,不得以政府费用运输家庭用品 (HHG)。当命令签发机构(海军军事人员
1董事(研究,发展,培训和扩展)10 A组2联合董事(计划)14 A组3联合董事(技术)17组4组董事I级I级I级(以前的区域官员)20 A组A组5高级会计官员(内部审计)24组A 6行政官员A 6行政官员27 Group A Group A Group A Group a Grote董事3 33 Group a 83 Groupe a Martive&Publicity A 33 Grouper I II(33 Z Markity II II II 10 Z Or)II(Z)33 GRERS 3 33 II(Z)33 GRERS 33 II(Z)33组33 ZORMER II II(Z) A组11高级科学官42 A组12高级科学官(产品多元化)45 A组13会计官员(内部审计)50组A组14年度官员53 Comply B 15 A Clove b 15帐户经理56 B 16组官员59组官员59组B 17组B 17研究官62组B 17研究员62组B 18私人秘书65组65组B组B组B组B 2组B 2 2 2 23 Group Shower Shower Manager 72 cum prote strume b 2 22 cum prot y cum premane b 2 22 cum ber cum by -by cum bef cum p 2 22 cum ber cum p 2 2 23官员81组B 24商店官员85组B 25高级审核员(内部审计)88组B 26助理90组B 27研究员92 B组28组28合作检查员95组B
蒙特卡洛 (MC) 方法已用于计算半导体中的半经典电荷传输超过 25 年,是微电子器件模拟最强大的数值工具 [1]。然而,当今的技术将器件尺寸推向了极限,传统的半经典传输理论已不再适用,需要更严格的量子传输理论 [2]。为此,人们提出了各种基于格林函数 [3] 或维格纳函数 [4] 方法的电荷传输量子动力学公式。虽然这种量子力学形式允许严格处理相位相干性,但它们通常通过纯现象学模型描述能量弛豫和失相过程。人们还提出了一种用于分析载流子-声子相互作用下的瞬态传输现象的完整量子力学模拟方案 [5]。然而,由于需要大量计算,其适用性仍然仅限于短时间尺度和极其简单的情况。因此,尽管人们付出了很多努力,尽管在研究这些量子动力学公式方面取得了无可置疑的智力进步,但它们在强散射动力学存在下的实际设备中的应用仍然是一个悬而未决的问题。Datta、Lake 和同事的最新成果似乎很有希望 [6]。然而,他们的稳态格林函数公式不能应用于时间相关的非平衡现象的分析,而这种现象在现代光电器件中起着至关重要的作用。在本文中,我们提出了一种广义 MC 方法来分析量子器件中的热载流子传输和弛豫现象。该方法基于控制单粒子密度矩阵时间演化的动力学方程组的 MC 解;它可以被视为对开放系统的扩展
《欧洲AI法案》(2024/1689)自2024年8月1日起就一直有效,并规范了欧盟(EU)的人工智能(AI)的使用。AI法案具有基于风险的方法。因此,从2025年2月2日起,禁止某些带来不可接受风险的AI系统。由《 AI法案》的主管来解释如何以监督目的解释禁令。为了在荷兰为此做准备,Autoriteit Persoonsgevens(AP)询问感兴趣的各方(公民,政府,企业和其他组织)及其代表寻求需求,信息和见解。我们可以使用所有输入来考虑对禁止的AI系统的进一步澄清。2024年9月27日,AP发布了第一个关于AI法案前两项禁令的意见。在第二次呼吁输入中,我们解决了第六次禁止:在工作场所或教育机构领域的情感识别系统(禁令F)。稍后,我们将要求对其他禁令进行输入。本文档在通过一组问题要求(附加)输入时概述了这些禁止的AI系统的特定标准。可以提交捐款,直到2024年12月17日。AP根据其作为算法和AI的协调主管的角色来呼吁输入。为了完成这项新任务,在AP内建立了算法监督协调部(DCA)。荷兰政府目前正在为《 AI法案》的国家监督当局进行正式指定。此呼吁的投入还与为支持《 AI法案》禁止的AI系统的未来监督进行的准备工作保持一致。
