{ 导师:Keivan Navi 教授 { 论文:利用量子点细胞自动机设计纳米级高效时序电路 { 选修课程:高级 VLSI、高级计算机架构、算术处理器、测试和可测试性设计、高级网络 2008–2012 计算机工程学士,硬件,伊朗伊斯兰共和国航空航天大学阿尔达比勒分校。{ 导师:Mehdi Effiatparvar 博士 { 论文:计算方法 { 选修课程:机器语言和系统编程、数字电子学、信号与系统、微处理器、VLSI 电路设计、接口电路设计、高级编程
MIB 和 RFC 标准 • RFC1213 MIB II • RFC1907 SNMP v2 MIB • RFC5519 IGMP v3 MIB • RFC1724 RIP v2 MIB • RFC2021 RMONv2 MIB • RFC1643、RFC2358、RFC2665 以太网类 MIB • RFC4836 802.3 MAU MIB • RFC4363 802.1p MIB • RFC2618 RADIUS 身份验证客户端 MIB • RFC4292 IP 转发表 MIB • RFC2932 IPv4 多播路由 MIB • RFC2934 用于 IPv4 的 PIM MIB • RFC2620 RADIUS 计费客户端 MIB • RFC2925 跟踪路由 MIB • RFC2925 Ping MIB • RFC1850 OSPF MIB • 私有 MIB • RFC1112、RFC2236、RFC3376、RFC4541 IGMP 侦听 • RFC4363 802.1v • RFC2338 VRRP • RFC1058、RFC1388、RFC1723、RFC2453、RFC2080 RIP • RFC1370 OSPF 适用性声明 • RFC1765 OSPF 数据库溢出 • RFC2328 OSPF v2 • RFC2740 OSPF for IPv6 • RFC3101 OSPF 次末梢区域 (NSSA) 选项;使 RFC1587 过时 • RFC2328 使 RFC2178 过时 • RFC2178 使 RFC1583 过时 • RFC1771、RFC1997、RFC2439、RFC2796、RFC2842、RFC2918 BGP • RFC3973 PIM-DM • RFC5059 PIM-SM • RFC3569、RFC4601、RFC4608、RFC4607、RFC4604 PIM SSM • RFC3376 IGMP • RFC2475 优先级队列映射 • RFC2475、RFC2598 服务类别 (CoS)
摘要 本文介绍了量子计算机架构的定义和实现,以便创建新的计算设备——量子计算机作为加速器。要解决的一个关键问题是这种量子计算机是什么,以及它与控制整个执行过程的经典处理器有何关系。在本文中,我们明确提出了量子加速器的概念,它包含加速器的所有层。这种堆栈从描述加速器目标应用程序的最高级别开始。下一层抽象了量子逻辑,概述了要在量子加速器上执行的算法。在我们的案例中,逻辑以小组开发的通用量子-经典混合计算语言 OpenQL 来表达,该语言将量子处理器视为计算加速器。OpenQL 编译器将程序转换为通用汇编语言 cQASM,可在量子模拟器上执行。cQASM 表示可由量子加速器中实现的微架构执行的指令集。在后续步骤中,编译器可以转换 cQASM 以生成 eQASM,该 eQASM 可在包含特定平台参数的特定实验设备上执行。这样,我们就能清楚地区分实验研究以寻求更好的量子比特,以及需要在量子设备上开发和执行的工业和社会应用。第一种情况为实验物理学家提供了一个全栈实验平台,使用具有退相干和错误率的真实量子比特,而第二种情况为量子应用开发人员提供了完美的量子比特,其中既没有退相干也没有错误率。我们在文章的最后明确介绍了三个全栈量子加速器的示例,分别是实验超导处理器、量子加速基因组测序和基于量子启发式方法的近期通用优化问题。我们小组目前正在积极研究后两种全栈模型。
摘要 —IBM 神经计算机 (INC) 是一种高度灵活、可重新配置的并行处理系统,旨在作为新兴机器智能算法和计算神经科学的研究和开发平台。它由数百个可编程节点组成,主要基于 Xilinx 的现场可编程门阵列 (FPGA) 技术。节点以可扩展的 3d 网格拓扑互连。我们概述了 INC,强调了其独特功能,例如执行的计算类型和可用的通信模式的灵活性和可扩展性,从而实现了新的机器智能方法和学习策略,而这些方法和策略并不适合 GPU 优化的矩阵操作/SIMD 库。本文介绍了机器的架构,应用程序将在其他地方详细描述。
我们报告了离子阱 QCCD(量子电荷耦合器件)架构的所有必要组件集成到坚固、完全连接且可编程的离子阱量子计算机中的情况。该系统采用 171 个 Yb + 离子作为量子比特,138 个 Ba + 离子用于协同冷却,并围绕 Honeywell 低温表面阱构建,能够进行任意离子重排和跨多个区域的并行门操作。作为最小演示,我们并行使用两个空间分离的交互区域来执行任意四量子比特量子电路。通过各种方式在组件级别和整体级别对该架构进行了基准测试。包括状态准备和测量、单量子比特门和双量子比特门在内的各个组件都具有随机基准测试的特征。整体测试包括并行随机基准测试,显示不同门区域之间的串扰可以忽略不计,利用中间电路测量的传送 CNOT 门,以及 2 4 的量子体积测量。
HIGHWIRE Powerstar(同轴电缆 POE,基础单元) HIGHWIRE Powerstar Base 4(同轴电缆 POE,基础单元)4 端口交换机 HIGHWIRE Powerstar Base 8(同轴电缆 POE,基础单元)8 端口交换机 HIGHWIRE Longstar(长距离同轴电缆 POE,基础单元) LONGSPAN 基础单元(长距离 POE,通过 POE 输入或 VPSU-57V 供电) CAMSWITCH 8 Plus(POE 输入或 VPSU-57V) 1U 19” 机架安装板,适用于 24 个 LONGSPAN 或 24 个 HIGHWIRE Longstar 单元 1U 机架安装托盘和面板 x 4 VHW-HWPS-B8 或 VCS-8P2
关于 Tripp Lite ................................................................................................................................................20
内存(RAM、ROM、PROM)计算机程序和数据以编码的二进制数字(位)的形式存储在内存中。主内存有两种基本类型:随机存取内存 (RAM) 和只读内存 (ROM)。CPU 可以“随机”添加或删除 RAM 中的数据。因此,RAM 通常比 ROM 更快。程序的数据部分在执行期间必须驻留在 RAM 中。由于 RAM 速度的提高,大多数程序的指令部分也在 RAM 中。这与只读内存 (ROM) 不同,只读内存永久存储数据,无法通过 CPU 的“随机”写入进行更改。ROM 即使在断电后也能保留存储的数据,因此被称为非易失性内存。此外,CPU 在其芯片内包含一个小型 RAM 缓存存储区域,用于存储常用数据。CPU 将始终访问其内部缓存内存,然后再从主内存或辅助(外部存储)内存中检索其他数据。