过去 25 年来,无人驾驶航空系统 (UAS) 或无人机技术(包括单个系统和 UAS 集群)得到了广泛应用。因此,随着该技术的不断成熟,这项技术以及使用这些 UAS 功能的能力既代表着当前的威胁,也代表着日益严重的威胁。在本次评估中,我们将无人机集群技术分为三类:(1) 由多个操作员协调的单个无人机群;(2) 已以协调方式编程为单独飞行、以领导者-跟随者配置飞行或以多无人机编队飞行(由人类操作员控制多架无人机)的无人机;(3) 可以在单个无人机之间进行通信并对外部刺激做出反应的智能无人机群。前两类代表了我们在本评估中所说的替代集群技术,而第三类被称为智能集群技术。1
无人机或无人驾驶飞机通常被称为无人驾驶飞行器 (UAV),由这些无人机组成的自组织网络通常被称为飞行自组织网络 (FANET)。无人机和飞行自组织网络最初与军事监视和情报收集有关;此外,它们现在被广泛用于民用领域,包括搜索和救援、交通监控、消防、摄像和智能农业。然而,由于其独特的架构,它们带来了相当大的设计和部署挑战,主要与路由协议有关,因为传统的路由协议不能直接用于飞行自组织网络。例如,由于高移动性和稀疏拓扑,频繁的链路中断和路由维护会导致高开销和延迟。在本文中,我们采用基于优化模糊逻辑的生物启发式蚁群优化 (ACO) 算法“Ant-Hocnet”来改进飞行自组织网络的路由。模糊逻辑用于分析无线链路状态信息(例如可用带宽、节点移动性和链路质量),并在没有数学模型的情况下计算最佳无线链路。为了评估和比较我们的设计,我们在 MATLAB 模拟器中实现了它。结果表明,我们的方法提高了吞吐量和端到端延迟,从而提高了 FANET 的可靠性和效率。
无人机或无人驾驶飞机通常被称为无人驾驶飞行器 (UAV),由这些无人机组成的自组织网络通常被称为飞行自组织网络 (FANET)。无人机和飞行自组织网络最初与军事监视和情报收集有关;此外,它们现在被广泛用于民用领域,包括搜索和救援、交通监控、消防、摄像和智能农业。然而,由于其独特的架构,它们带来了相当大的设计和部署挑战,主要与路由协议有关,因为传统的路由协议不能直接用于飞行自组织网络。例如,由于高移动性和稀疏拓扑,频繁的链路中断和路由维护会导致高开销和延迟。在本文中,我们采用基于优化模糊逻辑的生物启发式蚁群优化 (ACO) 算法(称为“Ant-Hocnet”)来改进 FANET 中的路由。模糊逻辑用于分析有关无线链路状态的信息,例如可用带宽、节点移动性和链路质量,并在没有数学模型的情况下计算最佳无线链路。为了评估和比较我们的设计,我们在 MATLAB 模拟器中实现了它。结果表明,我们的方法可以提高吞吐量和端到端延迟,从而提高 FANET 的可靠性和效率。
摘要无线网络的快速发展正在通过启用无缝,低延迟的通信来改变各种域,从eHealth系统转变为无人机群和自动驾驶汽车。在医疗保健中,无线传感器和5G网络正在通过连续的数据收集,远程诊断和个性化治疗方法彻底改变患者监控,从而确保高可靠性传播。同时,无人机(无人机)群越来越多地部署在诸如灾难响应,环境监测和交付服务等平民应用中,需要可扩展的通信协议以实现有效的数据交换和与地面站的协调。随着这些技术收敛,人工智能(AI)正在成为下一代无线网络的关键推动因素,从而通过网络节点级别的预测分析来增强系统性能。通过预测网络条件,AI赋予了自动驾驶汽车和无人机,以增强互操作性,优化路由,动态调整通信策略并改善跨应用程序的资源管理。本演讲将探讨分布式数据传输协议中的挑战,当前的进步和未来的研究方向,重点关注它们在整合EHealth系统,无人机群,自动驾驶汽车和AI-Driendiven网络中的作用,以开发更适应性和智能的通信基础设施。
摘要 CRISPR/Cas9 系统 ( 常间回文重复序列丛集 / 常间回文重复序列丛集关联蛋白系统 ) 为靶向基因编辑提 供了强大的技术手段 . 利用序列特异性 sgRNA 的引导 , CRISPR/Cas9 系统能够精准地在目标 DNA 的确切位置导 入双链切口 . 与已有的基因编辑手段相比 , 该系统具有更优异的简便性、特异性和有效性 . 目前 , 大量涉及体内 外多物种的 CRISPR/Cas9 基因编辑研究已充分展示了该技术的巨大潜力 , 为基于该技术的疾病治疗研究和临床 应用带来了希望 . 基于 CRISPR/Cas9 基因编辑技术所介导的非同源性末端连接和同源性 DNA 修复作用 , 近期多 个研究工作已经成功应用该技术修复了包括点突变和基因组缺失等在内的遗传疾病相关基因组缺陷 . 本综述 将总结近期有关利用 CRISPR/Cas9 基因编辑技术治疗人类遗传性疾病的相关临床前研究进展 .
图 1 用于评估人为栖息地改变 (HA) 和气候对白尾鹿的相对影响的相机群位置。深灰色阴影表示加拿大环境与气候变化部绘制的 HA,缓冲距离为 500 米(加拿大环境与气候变化部,2017 年),浅灰色阴影表示绘制 HA 的测绘边界。相机群通过使用 5 年多因素分析确定的气候维度 1 进行着色,因此较高的值(即较冷的颜色)代表更严酷的冬季。使用随机位置生成器将相机随机放置在 12.5 公里 x 4 公里的区域内,树上间隔至少 1 公里,所有相机都朝北以避免太阳对图像的干扰。插图描绘了研究区域相对于加拿大的关系,而开头的图像描绘了每个相机群内随机放置相机陷阱的示例。地图线划定了研究区域,并不一定描绘公认的国界。
1. 充电过程 IU5365E 采用完整的涓流充电、恒流充电、过充电、浮充 电四个过程进行充电。当电池电压小于涓流点时,系统以 I *20% 充电电流充电;当电池的电压大于涓流点时,系 C C 统以 I 充电电流充电;当电池电压达到所设定的过充电电 CC 压值 , 充电电流逐渐减小,当电流减小到所设定的过充电 结束电流值时,过充电结束,系统进入到浮充电过程 , 浮 充电电压为过充电电压V 的 90% 。 OC 浮充电模式的存在可以弥补由于电池自放电或者负载耗电 所导致的电池能量损失。在浮充电状态,如果输入电源和 电池仍然连接在充电器上,电池电压仍然逐渐下降到所设 置的过充电电压V 的 85% 时,系统会重新恢复充电状态。 OC
战略联系 当前的美国战略文件为确保和推进国家利益提供了总体要求。然而,新兴威胁和潜在的无人机群技术威胁着美国的态势。例如,2017 年《国家安全战略》指出:“我们将保持前沿军事存在,能够威慑并在必要时击败任何对手。” 3 随着美国军队在全球范围内的广泛投入,对手可以使用无人机群在许多领域挑战美国的利益;如果是这样,美国军方就无法可靠地投射力量来威慑和击败这些对手。此外,《国防战略》承认战争性质的变化,参与者可以更快速、更轻松地获取技术,包括人工智能 (AI)、自主性和机器人技术。 4 时任国防部长詹姆斯·马蒂斯 (James Mattis) 在 2018 年在国内表达了这种担忧,他承认国土不再是避难所,我们必须预见到针对“我们的关键国防、政府和经济基础设施”的攻击。无人机群对国家安全构成了重大的战略风险,应对这一新兴威胁给美国带来了技术、法律和理论三个关键领域的挑战和机遇。