显示器和音频 > 1 个 21.3 英寸彩色 LCD 舱壁显示器 — 1 个 17 英寸彩色 LCD 舱壁显示器 — 2 个音频放大器 — 每个盥洗室 1 个放大器 — 10 个扬声器 — 3 个低音扬声器 — 11 个 Sony® 轻型立体声耳机 — (作为散装设备提供)
ECAM 电子中央空调监控 EPSU 应急电源装置 FAP 乘务员面板 FEDC 灭火数据控制器 FM 故障信息 FSB 系好安全带 FWS 飞行警告系统 GUI 图形用户界面 IBU 集成镇流器装置(客舱灯) IDEFIX IP 和 AFDX 之间的测试设施数据交换接口 IPCU 防冰控制单元 LDCC 下层货舱 MMC 维护信息控制 MPB 多用途总线 NS 禁止吸烟 OBRM 机载可更换模块 OMS 机载维护系统 OE 原始设备 PA 乘客地址 PISA 乘客接口和电源适配器 PRAM 预录公告和登机音乐 PTS 购买者技术规范 PTT 一键通 S/D 烟雾探测器 SDF 烟雾探测功能 SIB 系统集成台 TDS 测试数据表 TIP 测试输入 VL 虚拟链路 V&V 验证和确认
信息技术流程描述和人机界面 (HMI) 这一新流程是利用端到端数字流程集成开发的。实际上,这意味着测量数据管理由空中客车计量软件套件提供,并与产品数据管理和空中客车操作系统相链接。在这个系统中,通过摄影测量、激光跟踪器和光电技术获得的数据与技术人员易于使用的 HMI 完全集成。用户体验已证实,以操作员为中心的 HMI 降低了操作员的复杂性,如图 2、3、4 和 5 所示。
•可惜的合成层:这种定制设计和制造的抗火焰合成层高度耐用,可以在任何PLEATER类型(旋转/刀片)上以不同的褶高高度打pleat,从而可以卓越的加工性和滤镜设计灵活性。•具有我们的Nanoweb™技术的图层:亚军专利的耐用合成纤维,通过其纤维直径接近性能的滑动区域,提供最佳的高效率和低压下降,延长车辆中的滤光度寿命和延长车辆的能量。•熔体层:放置在最终滤波器的上游时,该保护层即使没有单独的前滤器也可以延长过滤器的寿命和容量。此设计节省了最终车辆空调单元中的过滤器生产成本和空间。
摘要 基于模型的系统工程 (MBSE) 是在复杂系统开发中端到端使用数字模型的基本方法。特别是航空业,其系统复杂性不断增加,需要新的概念和方法来克服生态和社会经济挑战。因此,需要特定领域的模型来设计和评估系统,以支持各种系统调查,例如需求管理、安装空间优化或故障分析。与使用孤立的数字子模型、自然语言文档和纯物理原型相比,这些大多是异构系统的端到端耦合和链接具有许多优势(例如更短的开发时间)。此外,数字化允许多个专家团队在同一虚拟产品上进行全球和跨学科的协作。由于这种方法对于飞机客舱配置特别有前景,德国航空航天中心 (DLR) 开发了一个虚拟开发平台,用于飞机客舱及其系统的概念设计。因此,可以快速生成客舱配置的虚拟原型,以便在早期设计阶段可视化和研究新概念。通过功能系统架构和可执行系统架构模型扩展概念舱系统设计流程,可促进信息可追溯性、早期故障检测
系统开发阶段的逐步数字化正在缩短开发时间并降低成本。同时,更复杂系统中的交互越来越多,嵌套程度也越来越高,这影响了人类对系统依赖关系的理解以及对这些依赖关系的建模。这带来了数字化描述系统及其相互关系所需的知识(规则、法规、要求等)的挑战。飞机就是这种系统的一个例子。在实践中,机舱及其系统的技术设计通常与初步飞机设计分开进行,机舱结果将在飞机开发过程的后期进行整合。本文提出了一种概念设计方法,该方法能够根据初步飞机设计数据(参数集)进行机舱系统布局。因此,开发了一个中央数据模型,将机舱组件链接到多个学科,以实现自动布局。在这里,知识存储在本体中。将本体与设计规则链接并导入外部参数,可以生成机舱系统初步设计所需的缺失信息。设计规则基于已收集并形式化的需求、安全法规以及设计解释的专家知识。使用本体,可以实例化 XML 数据结构,其中包含有关属性、系统关系的所有信息
摘要:在许多新兴技术中,电池电动汽车(BEV)已成为对严格排放法规的突出和高度支持的解决方案。尽管受欢迎程度越来越大,但可能会危害其进一步传播的主要挑战是缺乏充电基础设施,电池寿命降级以及实际和有望的全电动驾驶范围之间的差异。本文的主要重点是制定综合能量和热舒适管理(IETM)策略。此策略可最佳地管理供暖,通风和空调(HVAC)单元所需的电能,这是电池负荷上最受影响的辅助设备,以最大程度地减少电池寿命在任何特定的驱动循环中的降解,同时确保实际的机舱温度徘徊在允许的公寓内悬停在参考机舱温度中允许的公寓温度限制内,并且驾驶员的驾驶员启动了驱动器,并始终启动。这项工作结合了健康(SOH)估计模型,高保真舱室热力学模型以及HVAC模型的市售BEV的前向示例模拟模型,以展示提出的增强电池寿命的IETM IETM策略的效果和功效。IETM的瞬时优化问题是通过利用目标函数凸度的黄金搜索方法来解决的。在不同的驾驶场景下进行的模拟结果表明,提议的物品控制器带来的改进可以将电池健康降解最大化高达4.5%,能源消耗量最高2.8%,同时将机舱温度偏差保持在允许的范围内,从而在允许的限制范围内与参考温度保持一致。
• 大型机舱允许在内部运载战术车辆、自行车和船只以及部队和装备 • 高功率储备和灵活性使 AW101 成为理想的战术直升机 • “贴地”飞行 • 使用标准燃料进行远程作战 • 可选的飞机生存设备 (ASE) 和枪支用于在高威胁环境中作战 • 低噪音特征 • 环境控制和低振动的机舱可容纳 16 张担架和 4 名医护人员 • 每个担架站的广泛医疗套件可提供先进的生命支持能力 • 1.83 米的机舱高度使医疗队能够轻松地在机舱内工作和移动 • 可通过大型机舱门或后坡道轻松进出机舱