蛙壶菌 ( Bd ) 是壶菌病的病原体,正在毁灭世界各地的两栖动物种群。Bd 属于壶菌谱系,这是一类早期分化的真菌,被广泛用于研究真菌进化。与所有壶菌一样,Bd 会从运动形态发展为固着生长形态,这一转变会导致其细胞骨架结构发生剧烈变化。由于缺乏用于检验有关潜在分子机制的假设的遗传工具,研究 Bd 细胞生物学、发育和致病性的努力受到限制。在此,我们报告了一种 Bd 瞬时遗传转化系统的开发。我们使用电穿孔将外源 DNA 递送到 Bd 细胞中,并在异源和天然启动子下检测到长达三代的转基因表达。我们还调整了转化方案以使用抗生素抗性标记进行选择。最后,我们使用该系统表达荧光蛋白融合,并作为概念验证,表达了肌动蛋白细胞骨架的遗传编码探针。利用活细胞成像,我们可视化了 Bd 生命周期每个阶段以及关键发育转变期间聚合肌动蛋白的分布和动态。该转化系统可以直接测试有关 Bd 发病机制的关键假设。该技术还为解答壶菌细胞、发育和进化生物学的基本问题铺平了道路。
在概述了国防部(国防部)问题之后,布罗斯搬到了他的中心论点:具有最快,最有效的杀戮连锁店的一方将在现代战争中获胜,而美国没有相应地投资。布罗斯将杀戮链定义为组织迅速准确执行从定位到杀死敌人目标的所有步骤的能力。它代表了现代战争中的基本竞赛。但美国正在失去这场比赛。即使俄罗斯展示了将旧技术(例如炮兵)与新的无人机和手机相关的高速杀戮连锁店的价值,但在特朗普政府初期,主要预算大多是在制造新版本的新版本的旧武器系统上。
注 1:如何进行双等位基因敲除:如果您只有单等位基因敲除(杂合子)并且想要获得双等位基因敲除(纯合子),您可以订购另一个包含不同哺乳动物选择标记(如杀稻瘟素或新霉素抗性标记)的供体载体。OriGene 拥有两种功能性盒。您可以使用新的供体载体再次进行敲除程序以靶向第二个等位基因,因为一个等位基因已被靶向并被 GFP-puro 盒替换。或者,您可以使用 Cre(SKU GE100018)从您编辑的细胞中去除 puro 盒,并使用相同的供体载体靶向第二个等位基因。
图 1. 供体 DNA 模板设计。TrueTag 供体 DNA 试剂盒提供用于 (A) N 端标记或 (B) C 端标记目标基因的 PCR 模板。具有短同源臂 (HA) 序列的位点特异性引物用于 PCR 扩增以生成供体 DNA 分子。通过 CRISPR-Cas9 或 TALEN ™ 系统切割目标位点后,供体 DNA 在 HDR 过程中整合到基因组中。2A 自切割肽 (2A) 允许选择标记 (嘌呤霉素或杀稻瘟素) 和标记基因从内源启动子表达。每个模板的通用引发序列 (Uni) 允许轻松设计 PCR 引物。
保护剂和系统性杀菌剂有两种一般类型的杀菌剂类型:保护剂和系统。保护剂杀菌剂(有时称为接触),在施用后留在植物表面上,并且不穿透植物组织。系统性杀菌剂被吸收到植物中,并在植物组织中移动。某些杀菌剂是局部系统性的,在植物内仅移动有限的距离。dicarboximide杀菌剂是该组的好例子。某些系统的系统是适度的系统性,例如DMI杀菌剂,而另一些系统是高度系统性的,并且很容易通过植物的血管运输系统(例如磷酸盐)移动。高度移动系统的示例包括苯甲酰唑。大多数系统性杀菌剂仅在植物组织中向上移动。只有一个全身杀菌剂(Fosetyl-Al)在双向上移动(从叶到根,反之亦然)。全身性杀真菌剂有时会在菌合感染该植物后会抑制杀菌剂,而在感染开始有效之前,植物表面上必须存在保护剂杀真菌剂。配方多种杀真菌产品可在多种配方中获得。用于保护剂杀菌剂,可喷涂的配方(可润湿粉末,可流动,可流动,可散发颗粒,可乳化浓缩物)通常比颗粒状配方提供更好的疾病控制。可喷涂的配方即使对于在植物组织中没有高度流动性的系统物质中,也可以优于颗粒状配方。喷雾设备比颗粒状吊具更透彻地覆盖植物表面。更彻底的覆盖范围可以更好地控制真菌感染叶子。如果应用杀菌剂喷雾剂来控制根病,通常建议在杀菌剂干燥之前轻轻灌溉以将其洗净到根区域中。同样,如果将颗粒状杀菌剂应用于控制根部疾病,请应用于干草皮并在施用后灌溉。杀菌剂混合物为草皮疾病控制制造的几种产品是包含两种或多种活性成分的预包装混合物。混合物提供了一些防止杀菌剂耐药性的保护,通常提供针对草皮疾病的更广泛的活性。预包装的混合物提供了不兼容的便利性和保证,而现场储罐混合则提供了更大的杀菌剂选择和应用率的灵活性。
• 第 1 茬再生稻(29.5%),第 2 茬再生稻(29.1%),第 3 茬再生稻(9.8%),第 4 茬再生稻及以上(3.1%) • 播种季节:8 月中旬至 1 月初
摘要。水稻种植是国家经济环境中的重要经济活动,因为它为农村家庭提供了就业机会,并将大米作为印尼人的主要主食。但是,稻农面临小规模农业的规模问题,大约80%的稻农耕种了不到0.5公顷的公顷,平均稻田养殖收入约为IDR 546万/公顷/季节。此收入仅从谷物生产中获得,而水稻工厂的一部分有可能处理和产生收入。本研究旨在根据循环经济方法来确定机会通过创造更多的价值和加工水稻副产品来确定养殖者收入的机会。使用的方法是来自二级数据分析支持的发表科学期刊的文献综述。该研究结果表明,有机会通过利用稻草进行有机肥料,生物炭的果壳,动物饲料的许多部分来增加水稻农民的收入,以及用于功能性食品的稻米麸皮。本研究建议,要有效地实施这些经济循环活动,农民必须在农民团体组织(例如农民公司或农民拥有的企业)中工作。
基于CRISPR的摘要定向进化是一种有效的繁殖生物技术,可改善植物中的农艺特征。然而,使用单个单个指南RNA,其基因多样化仍然受到限制。我们在这里描述了多重的正交基础编辑器(MOBE),以及随机多重的SGRNA组装策略,以最大程度地提高基因多样化。bobe可以在不同的目标上诱导有效的正交安倍(<36.6%),CBE(<36.0%)和A&CBE(<37.6%),而SGRNA组装策略随机基础编辑各个目标上的基础编辑事件。与稻米乙酰辅酶A羧化酶(OSACC)的第34外显子的每个链中的130和84个靶标相应,我们观察到了随机双重双重和随机三重SGRNA库中的目标 - 折叠组合。我们使用MOBE和大米中的随机双重SGRNA文库进一步进行了OSACC的定向演变,并获得了更强的除草剂耐药性的单个或连接的突变。这些策略对于功能基因的原位定向演变很有用,并且可能会加速大米的性状改善。
使用GC-ECD进行了修改的Quechers方法,以确定pyraclostrobin,difenoconazole,dimethomorph和Azoxystrobin的多重残基,并通过GC-FPD(与S滤波器)间接确定MANEB,MANCOZEB和MANCOZEB和PROPINEB的总残留物(具有S滤波器)。同时,根据良好的农业实践(GAP)进行了现场试验,以研究其在广西省农业气候和农作物系统下残留降解的特征。每个目标峰的分离效应良好,线性范围为0.01 - 5 mg l 1,检测极限(LOD)为0.003 - 0.015 mg kg 1,量化量(LOQ)的限制为0.01 - 0.01 - 0.05 mg kg kg 1。蔬菜西红柿和樱桃番茄的平均回收范围分别为70.5 - 120.0%和70.8 - 119.8%,相对标准偏差(RSD)小于7.1%。对植物和樱桃番茄中七种杀菌剂的现场试验表明,二硫代氨基酸杀菌剂的半衰期(t 1/2)(t 1/2)(Metiram,Mancozeb和prepineb和PresineB)定义为总残留物,确定为CS 2),吡咯蛋白,二核蛋白酶,二核疫苗,以及5. difenocors,dimethobsy of 5 12.7 - 17.8,7.6 - 7.9,6.6 - 6.9和6.3 - 6.6 d分别为蔬菜西红柿。樱桃番茄的范围分别为4.3 - 4.5,10.8 - 11.8,6.7 - 7.0,5.4 - 5.5和5.9 - 6.2 d。因此,樱桃番茄可以被视为西红柿的代表性品种,以实现剩余的外推,以建立西红柿中杀真菌剂的最大残留限量(MRL)值并进行市场监测。结合最终的残基和市场监测结果,结果表明,樱桃番茄的末期残留物,初始沉积物和七种杀真菌剂的最大残留物比蔬菜西红柿高,可以在从三个市场购买的樱桃番茄中检测到这七种农药。
摘要 CRISPR/Cas 基因组编辑在农业应用中显示出巨大的潜力,包括提高作物品质和抗病性。CRISPR/Cas9 及其变体已成功地在植物基因组中引入了靶向修饰,增强了抗病性和营养品质等特性。CRISPR 技术在茶叶育种中的应用已经显示出良好的效果,通过精准的基因改造可以培育抗病茶树并提高茶叶品质。CRISPR 革命为茶叶精准育种开辟了新途径,为提高茶叶品质和抗病性提供了一种强大而有效的方法。通过利用 CRISPR/Cas 系统的先进功能,本研究旨在开发具有改良特性的茶叶品种,解决茶叶生产中作物品质和病害管理的挑战。未来的研究应侧重于优化 CRISPR 技术并解决潜在的局限性,以充分利用这项革命性技术在茶叶育种中的优势。关键词 CRISPR 技术;精准育种;茶叶品质;抗病性;基因组编辑