LM193 系列是高增益、宽带宽设备,与大多数比较器一样,如果输出引线无意中通过杂散电容与输入端电容耦合,则很容易发生振荡。这仅在比较器改变状态时输出电压转换间隔期间出现。无需电源旁路即可解决此问题。标准 PC 板布局很有用,因为它可以减少杂散输入输出耦合。将输入电阻器减小到 < 10 k Ω 会降低反馈信号电平,最后,即使添加少量(1.0 至 10 mV)正反馈(滞后)也会导致如此快速的转换,以至于不可能因杂散反馈而产生振荡。简单地将 IC 插入插座并将电阻器连接到引脚将在小的转换间隔内引起输入输出振荡,除非使用滞后。如果输入信号是脉冲波形,具有相对较快的上升和下降时间,则不需要滞后。
超材料是一类具有负介电常数和/或磁导率的人工材料,在自然界中尚不存在此类材料。超材料的概念最早由JB Pendry于20世纪90年代提出,近二十年来,高频超材料在电磁学、力学和光学等领域得到了广泛的研究和应用。超材料由多个具有相同结构的晶胞组成,这些晶胞在空间中周期性排列,以模拟晶体中的晶格结构。对于高频电磁超材料,每个晶胞由导体形成的电感和导体之间形成的杂散电容组成。电感和电容在特定频率下发生共振,从而感应出较大的导体电流,进一步增强外加磁场。然而,现有的高频超材料由于一些技术瓶颈,无法用于低频(工频至兆赫兹)大功率(>200W)电磁装置。该项目的目标是开发具有负磁阻的低频超材料单元,以获得一些基本的设计知识,以备将来的突破。该项目中低频超材料的目标应用是三维无线电力传输系统。该项目的成功将为未来制造世界上第一种低频超材料产生新的基础知识。项目/中心网站 https://www.ntu.edu.sg/csie
我认为在可预见的未来,电阻器、电容器和二极管仍将使用导线;它们用于维修目的和更高功率的电路。表面贴装元件最适合由自动化机械组装的电路和高频应用,在这些应用中,传统元件会产生过多的杂散电容。更关键的问题是,许多较新的 IC 仅以表面贴装形式提供,因此您无法将它们插入无焊面包板。您甚至无法将它们插入其他类型的插座;它们只能通过焊接到印刷电路板上才能使用。一种选择是使用印刷电路进行面包板制作,就像我们许多人在 DIP 封装的早期所做的那样,那时无焊面包板还没有普及。制作一块印刷电路板,将 IC 连接到焊盘或孔阵列;然后添加您想要的任何组件。甚至可以将 IC 连接到一排插针,插入无焊面包板。现成的电路板可以同时完成这两件事,称为“冲浪板”,由 Capital Advanced Technologies 制造,地址为 309 Village Drive #A, Carol Stream, IL 60188;网址:www.capitaladvanced.com;电话:630 -690 -1696;可从许多分销商处购买,包括 Digi-Key,地址为 701 Brooks Ave. S., Thief River Falls, MN 56701;电话:800 -344 -4539;网址:www.digikey.com。图 2 显示
哺乳动物的大脑由数千万到数千亿个神经元组成,这些神经元以毫秒级的时间尺度运行,而目前的记录技术只能捕捉到其中的一小部分。能够以高时空分辨率对神经活动进行采样的记录技术一直难以扩展。研究最深入的哺乳动物神经元网络(例如大脑皮层)呈现出分层结构,其中最佳记录技术可在大面积上进行密集采样。然而,对特定应用设计的需求以及大脑的三维结构与二维微加工技术之间的不匹配严重限制了神经生理学研究和神经假体。在这里,我们讨论了一种可扩展神经元记录的新策略,即将玻璃包覆微线束与来自高密度 CMOS 体外 MEA 系统或高速红外摄像机的大规模放大器阵列相结合。由于玻璃包覆微线中芯金属的高导电性,允许使用超薄金属芯(低至 < 1 µ m)和可忽略不计的杂散电容,因此实现了高信噪比(< 25 µ V RMS 本底噪声,SNR 高达 25)。尖端的多步电化学改性可实现超低接入阻抗和最小几何面积,这与芯直径基本无关。我们表明,可以减小微线尺寸,以几乎消除插入时对血脑屏障的损伤,并且我们证明微线阵列可以稳定地记录单个单元活动。将微线束和 CMOS 阵列相结合可以实现高度可扩展的神经元记录方法,将电神经元记录的进展与硅微加工的快速进展联系起来。系统的模块化设计允许自定义记录位置的排列。我们采用微创、高度绝缘和功能化的微线束将二维 CMOS 架构扩展到第三维,这种方法可以转化为其他 CMOS 阵列,例如电刺激设备。
哺乳动物的大脑由数千万到数千亿个神经元组成,这些神经元以毫秒级的时间尺度运行,而目前的记录技术只能捕捉到其中的一小部分。能够以高时空分辨率对神经活动进行采样的记录技术一直难以扩展。研究最深入的哺乳动物神经元网络(例如大脑皮层)呈现出分层结构,其中最佳记录技术可在大面积上进行密集采样。然而,对特定应用设计的需求以及大脑的三维结构与二维微加工技术之间的不匹配严重限制了神经生理学研究和神经假体。在这里,我们讨论了一种可扩展神经元记录的新策略,即将玻璃包覆微线束与来自高密度 CMOS 体外 MEA 系统或高速红外摄像机的大规模放大器阵列相结合。由于玻璃包覆微线中芯金属的高导电性,允许使用超薄金属芯(低至 < 1 µ m)和可忽略不计的杂散电容,因此实现了高信噪比(< 25 µ V RMS 本底噪声,SNR 高达 25)。尖端的多步电化学改性可实现超低接入阻抗和最小几何面积,这与芯直径基本无关。我们表明,可以减小微线尺寸,以几乎消除插入时对血脑屏障的损伤,并且我们证明微线阵列可以稳定地记录单个单元活动。将微线束和 CMOS 阵列相结合可以实现高度可扩展的神经元记录方法,将电神经元记录的进展与硅微加工的快速进展联系起来。系统的模块化设计允许自定义记录位置的排列。我们采用微创、高度绝缘和功能化的微线束将二维 CMOS 架构扩展到第三维,这种方法可以转化为其他 CMOS 阵列,例如电刺激设备。