火山。几项研究将这些现象与岩浆和水热流体联系起来。例如,在经过广泛研究的Campi Flegrei Caldera的情况下,最近的文献表明,热弹性弹性(TPE)包含模型适合描述经常伴随其无序发作的观察到的变形和地震性。最近的一些著作提出了分析解决方案,以建模薄盘形纳入的情况,即厚度比半径小得多。由于这种限制可能是关键的,随后将TPE包容性模型扩展到具有任意厚度的圆柱形夹杂物,通过将它们表示为几个薄二张圆形包含物(元素)的叠加。在本文中,我们演示了如何估计由圆柱形TPE夹杂物引起的位移和应力场的最小元素数量(厚度超过半径)。对于大于0.3的长宽比,单个元素模型将不再被证明适合以良好的精度表示位移和压力。
DiffSim: Denoising diffusion probabilistic models for generative facies geomodeling Minghui Xu*, Suihong Song, Tapan Mukerji Stanford University SUMMARY Constructing high-resolution and realistic geomodels plays an important role in the decision-making processes of earth resources exploration and other sustainability strategies like subsurface carbon dioxide sequestration.生成模型在地系上表现出巨大的希望,因为它们能够嵌入抽象的地质知识。因此,我们探讨了降解扩散模型,新的生成方法的能力,以学习地下相地模型的复杂和高维数据分布。合成通道数据集的实验说明了无条件扩散模型在保证空间模式,数据分布和多样性中的有效性。重要的是,这些模型产生了与地质真实性相矛盾的文物的实现。此外,我们还测试了有条件的扩散模型,以创建逼真的相模型,同时调节井相数据。引言生成符合地质学家知识和空间统计关系的模型对于理解地质过程和地球资源探索至关重要。传统的地址化方法,例如基于变量图或基于多个统计的方法(MPS),已经证明了它们学习空间模式并在许多情况下产生相对逼真的地质模型的能力(González等,2008; Linde等,2015)。但是,它们有效地描述了有效的地质模式的能力有限。例如,变量图仅依靠两点关系来构建地质模型,该地质模型无法描述高度非线性的模式。与基于变异函数的方法相比,MP可以捕获更复杂的地质现象。然而,国会议员仍然面临着在强烈异质地质环境中准确再现复杂现实主义的挑战。深度学习的生成模型通过有效捕获输入数据集的基本分布来综合高维数据,在综合高维数据中取得了出色的性能。许多研究人员已将生成对抗网络(GAN)应用于地理编码(Zhang等,2019; Song等,2021a,2021b)和反转问题(Mosser等,2020; Song等,2023)。但是,gan的培训可能会面临挑战,因为两个神经网络(发电机和歧视者)以对抗性方式同时训练。
Figure 1: Depicts a) A conceptual figure showing different chemical subspaces, including unknown chemical space (gray), exposome chemical space (yellow), measurable chemical space (blue), measured chemical space (magenta), and identified/characterized chemical space (green) whereas b) shows the chemicals in US-EPA CompTox with 800 k unique structures.主成分图是使用六个元素质量缺陷和US-EPA Comptox中化学物质的单异位素质量产生的(这些计算的详细信息可在其他地方提供33,34)。应注意的是,子空间的大小仅用于可视化目的,并且不代表这些空间的真实大小。
本文介绍了对含有大约3%Si类型,体积分数和形态的大约3%Si的非金属夹杂物的分析。夹杂物分为3个主要组:氧化物,硫化物,硝酸盐,它们共同形成复合物。这项工作基于两个部分(纵向和横向滚动方向)的众多金相观察。该研究是对化学成分不同的三个铸件进行的。分析的铸件的特征是不同的非金属包裹物,这可能与化学组成的微小差异有关。分析的结果表明,最常见的夹杂物是氧化物和硝酸盐。硫化物偶尔发生。关键字:非金属包含;氧化物;硫化物;硝酸盐;高硅钢
摘要:RAW Earth在当代建筑中具有有用的应用,作为一种可持续的圆形建筑材料。本研究旨在通过生命周期思维方法评估具有相似热性能的几种基于地球的壁系统的环境性能。尤其是针对(a)未稳定的土壤(原位生产),(b)压缩的地球块(在工厂预制),(c)稳定的地球和(d)轻地球,全部与生物基纤维结合(例如天然纤维,例如,corck,corc,corc,corck ymection suctutiation),为(c)稳定的材料,为(c)稳定的土壤和/公会材料,为(c)稳定的土壤和(d)稳定。结果显示,在整个生产链中避免碳排放,水足迹和体现能量方面,并突出了限制和潜在的改进。此外,还基于嵌入在天然纤维中的碳来估计农作物的CO 2抵消。尤其是,轻地球壁系统最适合最大程度地减少环境影响,而庞大的建设性技术(如未稳定的撞车地球)显示出更高的动态热性能,可用于在地中海气候中使用。
理解微观自由度在强烈相互作用的系统的行为是许多物理领域的主要目标,范围从结构镜[1,2]到基本粒子理论[3,4],甚至延伸到量子重力[5,6]。但是,这些系统的第一原则计算通常非常困难,并且需要强大的工具。计算在系统进行相转换时特别具有挑战性,因为可能会出现新的自由度并变得相关。在这种情况下,基本理论必须始终如一地关联这两个阶段,从而描述了从一组自由度到另一组自由度的过渡。对于二阶过渡,系统在所有长度尺度上的行为取决于有限的所谓关键指数。这一问题的许多现代方法中的一种是功能重新归一化组(FRG)[7-11],也称为精确的重新归一化组(RG)或
摘要在包含物和不同材料的基质组成的复合材料中,一些包含物彼此紧密地位于彼此之间。如果夹杂物的材料特性与基质的材料特性高,则场浓度发生在紧密的夹杂物之间的狭窄区域中。在复合材料和成像理论中,定量地理解场浓度是重要的,因为它代表了压力或场的增强。过去30年左右,在分析这种野外浓度方面的情况下取得了重大进展:最佳估计和渐近表征限制了场浓度,在电导率方程(或抗层弹性),线性弹性系统和Stokes系统的情况下得出了现场浓度。本文的目的是以连贯的方式审查其中的一些。
这些材料已由美国银行研究所(Bank of America Institute)准备,仅出于一般信息目的提供给您。在这些材料参考银行数据的范围内,此类材料并非旨在反思或指示,也不应依靠美国银行的运营,财务状况或绩效结果。美国银行研究所是一个智囊团,致力于发现推动商业和社会向前发展的强大见解。利用来自银行和世界各地的数据和资源,该研究所提供了有关经济,可持续性和全球转型的重要原始观点。除非另有明确说明,否则此处表达的任何观点或意见仅是美国银行研究所和所列出的任何个人作者,并且不是BOFA全球研究部或美国银行公司的任何其他分支机构或其分支机构和其附属公司和/或子公司(美国银行)的产物。这些材料中的观点可能与美国银行全球研究部或美国银行其他部门或美国部门所表达的观点和意见有所不同。已从认为可靠的消息来源获得了信息,但美国银行并不保证其完整性或准确性。观点和估计构成了这些材料之日起的判断,并且可能会更改,恕不另行通知。该材料不构成任何人或代表美国银行或代表任何人购买或出售任何安全或金融工具或从事任何银行服务的要约或邀请。保留所有权利。本文所表达的观点不应被解释为任何特定客户的个人投资建议,也不旨在作为特定客户的特定证券,金融工具,策略或银行服务的建议。这些材料中的任何内容构成了投资,法律,会计或税收建议。版权2023美国银行公司。
b" 对限制或提供雨水控制机会的场地特征和条件进行叙述性分析或描述。包括土壤类型(包括自然资源保护局 (NRCS) 定义的水文土壤组)、场地坡度和地下水深度。对保护自然资源的场地设计特征进行叙述性描述。对场地设计特征、建筑特征和路面选择进行叙述性描述和/或制表,以尽量减少场地的不透水性。对 DMA 进行制表和大小计算,包括自处理区、自保留区、排水至自保留区的区域以及排水至雨水管理设施的区域。详细信息和描述表明有足够的水头将径流引导到、流经和流出每个雨水管理设施到批准的排放点。已识别污染源的表格,以及针对每个污染源,用于最大程度减少污染物的源头控制措施。视情况而定,请参阅市政府关于垃圾围栏和装卸码头的标准计划,以及消防喷淋试验水排放指南。上述市政府网站上提供了此信息的链接。雨水管理设施中所选植物种类的清单以及选择这些植物种类的原因。包括如何灌溉植物以尽量减少用水量并确保植物存活的说明。请参阅上述市政府关于植物选择、间隔和灌溉的指南。提供了如何防止垃圾和杂物进入市政雨水排水系统的说明和详细信息。上述市政府网站上提供了已获批准的完整垃圾收集设备清单。所有雨水管理设施的一般维护要求。所有雨水管理设施的维护通道说明。设施维护和更换的资金来源和永久实施方式。识别与规范或要求的任何冲突,或实施雨水控制计划的其他预期障碍。土木工程师、建筑师和景观设计师的认证。适用时,附录:湾区水文模型表明符合水文改造管理标准。适用时,附录:描述在拆除活动期间如何管理含 PCB 的建筑材料。有关更多信息,请参阅此网页:https://dublin.ca.gov/2113。"
