摘要:随着新出现的AI能力增加在医疗保健领域中,侵犯用户隐私的潜力,道德问题和最终对用户的危害是威胁到这些能力成功且安全采用这些能力的最重要的关注点。由于这些风险 - 滥用这些高度敏感的数据,不适当的用户概况,缺乏足够的同意和用户不认识都是所有因素必须牢记以实现“在建立这些功能”时实现“逐个设计”,以实现医疗目的。本文旨在查看该领域最高的隐私和道德问题,并提供建议以减轻其中一些风险。我们还提出了差异隐私的技术实施,以证明将噪声添加到健康数据中如何显着改善其隐私,同时保留其效用。
近期量子计算机的计算能力受到门操作的噪声执行和有限数量的物理量子比特的限制。混合变分算法非常适合近期量子设备,因为它们允许在用于解决问题的量子资源和经典资源数量之间进行广泛的权衡。本文通过研究一个具体案例——将量子近似优化算法 (QAOA) 应用于最大独立集 (MIS) 问题的实例——研究了算法和硬件层面的权衡。我们考虑了 QAOA 的三种变体,它们在算法层面根据所需的经典参数数量、量子门和所需的经典优化迭代次数提供不同的权衡。由于 MIS 是一个受约束的组合优化问题,因此 QAOA 必须尊重问题约束。这可以通过使用许多多控制门操作来实现,这些操作必须分解为目标硬件可执行的门。我们研究了该硬件级别可用的权衡,将不同本机门集的门保真度和分解效率组合成一个称为门分解成本的单一指标。
上下文。海洋垃圾是一个日益增长的全球问题,它会影响生物多样性和人类社会。东亚亚洲遭受了重大影响,由于高生物多样性,密集的人群和大量塑料进入海洋环境,主要是通过河流进入海洋环境。目标。借鉴决策原理,结构化决策(SDM)可以通过确定在海洋和沿海环境中减少塑料暴露于物种,生态系统和人类种群的最佳选择,并总体上减少开放大洋中塑料塑料碎片的总体减少,从而改善海洋碎片管理的现场选择。方法。我们将SDM框架与塑料传输模型相结合,并量化了542个地点的环境和社会目标的利益,这些地点涵盖了沿珊瑚三角生物多样性热点的东南亚海岸沿线的683条河流。我们为所有下游珊瑚礁,关键的生物多样性地区,海洋保护区和沿海社区的塑料数量和流量减少和量化指标进行了建模和量化指标。关键结果。没有任何位置是所有目标的最佳选择,但是多个指标有助于跨特定目标进行权衡。尽管在2个月后仍有95%的所有塑料碎片在海景中循环中,但几条河流不仅贡献了大量的塑料碎片,从而对整体海洋污染造成了大量的塑料碎片,而且在下游的大量污染中也贡献了大量的污染。结论。含义。只有通过调节和减少塑料产品的产生,才能停止使用塑料碎片的海洋环境污染的日益增加。但是,只要塑料碎片仍在环境中循环,鉴定去除塑料污染将为一组重要目标带来最佳结果,这将是一项重要的缓解措施。所提出的框架有效地有助于理解现有的权衡,并且很容易适应以包括其他指标或目标。使用此框架使决策者能够在其独特的社会生态环境中开发量身定制的优先级进程,以清理干预措施。这种新的决策科学方法用于识别有效的塑料清理空间管理策略,可以转移到任何地理位置上,并且具有增强本地到全球塑料管理的能力。
协变性转移是一种常见的实践现象,可以显着降低模型的准确性和公平性能。在协变量转变下确保不同敏感群体的公平性至关重要,因为诸如刑事司法等社会意义。我们在无监督的制度中运行,其中只有一组未标记的测试样本以及标记的训练集。在这种高度挑战但现实的情景下提高公平性,我们做出了三项贡献。首先是一个基于新型的复合加权熵的目标,以实现预测准确性,并通过代表匹配的损失进行了优化。我们通过实验验证,在帕累托意义上,相对于几个标准数据集的公平性 - 准确性权衡,在帕累托意义上,使用损失配方优化优于最先进的基线。我们的第二个贡献是一个新的环境,我们称之为不对称的协变量转变,据我们所知,以前尚未研究过。与其他组相比,当一个组的协变量显着转移时,发生不对称的协变量转移发生时,当一个主体群体过分代表时,就会发生这种情况。虽然这种设置对当前基线非常挑战,但我们表明我们提出的方法显着胜过它们。我们的第三个贡献是理论,我们表明我们的加权熵项以及训练集的预测损失近似于协变量下的测试损失。通过经验和正式的复杂性界限,我们表明,与看不见的测试损失的近似不取决于影响许多其他基线的重要性采样方差。
蝗虫响应人口密度变化而表现出表型可塑性,在孤立和群体阶段中具有不同的表型。在过去的十年中,许多研究揭示了阶段变化的分子机制,其中包括身体着色,信息素,行为,飞行,繁殖力,免疫力和衰老的变化。我们对与这些表型差异相关的分子机制的不明白,随着蝗虫基因组的解码,宽度和深度扩大了,涉及转录,转录后,翻译和表观遗传调节。由基因和非编码RNA组成的大规模调节网络反映了响应环境变化的蝗虫相变的系统修饰。基因操纵技术已验证了相变的特定基因和相关路径的功能。本评论重点介绍了蝗虫阶段变化研究的最新进展,并表明在群落和孤立的蝗虫中,能量和代谢分配的分歧分别是长距离迁移和局部生殖的适应性策略。最后,我们提出了未来的研究方向,并讨论了蝗虫表型可塑性领域的新兴问题。
具有挑战性的组合优化问题在科学和工程领域无处不在。最近,人们在不同的环境中开发了几种量子优化方法,包括精确和近似求解器。针对这一研究领域,本文有三个不同的目的。首先,我们提出了一种直观的方法来合成和分析离散(即基于整数)优化问题,其中问题和相应的算法原语使用与编码无关的离散量子中间表示 (DQIR) 来表示。与以前的方法相比,这种紧凑的表示通常可以实现更高效的问题编译、不同编码选择的自动分析、更容易的可解释性、更复杂的运行时过程和更丰富的可编程性,我们通过一些示例对此进行了演示。其次,我们对几种量子比特编码进行了数值研究;结果显示了许多初步趋势,有助于指导为特定硬件集和特定问题和算法选择编码。我们的研究包括与图着色、旅行商问题、工厂/机器调度、金融投资组合再平衡和整数线性规划相关的问题。第三,我们设计了低深度图派生部分混合器 (GDPM),最多 16 级量子变量,证明了紧凑(双
总结欧洲可再生电力的潜力足以使从自我融合的,统一的地区到相互联系的大陆在不同尺度上完全可再生供应。我们不仅表明大陆规模的系统是最便宜的,而且国家规模及以下的系统可能会以20%或以下的成本罚款。传输是低成本的关键,但是没有必要大大扩展传输系统。仅传输电子才能平衡频率时,传输网格的大小与当今的大小相当,尽管具有扩展的交叉边界能力。范围内最大的差异涉及土地使用,因此是社会接受:在大陆系统中,一般能力集中在最佳资源所在的欧洲外围。区域系统具有更多的分散生成。因此,关键的权衡不是在地理规模和成本之间,而是在规模和所需发电基础设施的空间分布之间。
图2:此数字描述了繁殖力转移权衡。面板A显示了繁殖力(黑色曲线)和传输(蓝色曲线)作为在资源分配轴x上的主机位置的函数。黑色和蓝色的垂直线分别表示最佳的繁殖力(X F)和免疫(Xβ)的位置。Optima之间的距离,| x f -xβ| ,固定权衡强度,如面板b所示。参数:x f = 0,σf = 1,f max = 1,σβ= 1,βmax = 1,qβ= 1,qβ= 1,xβ= 2在面板A和xβ= 1上。3,1。8,2。3,2。9和3。5在面板上b。
摘要 CRISPR-Cas 系统已被广泛用作基因组编辑工具,其中两种常用的 Cas 核酸酶是 Spy Cas9 和 Lb Cas12a。虽然这两种核酸酶都使用 RNA 向导来寻找和切割靶 DNA 位点,但这两种酶在原间隔区相邻基序 (PAM) 要求、向导结构和切割机制方面有所不同。在过去的几年里,合理工程设计导致了 PAM 放宽变体 Sp RYCas9 和 imp Lb Cas12a 的诞生,以拓宽可靶向的 DNA 空间。通过使用它们的催化无活性变体 (dCas9/dCas12a),我们量化了蛋白质特异性特征如何影响靶标搜索过程。为了进行量化,我们将这些核酸酶与光激活荧光蛋白 PAmCherry2.1 融合,并在大肠杆菌细胞中进行单粒子追踪。通过跟踪分析,我们推导出了每种具有非靶向 RNA 向导的核酸酶的动力学参数,这强烈表明 Lb dCas12a 变体对 DNA 的询问比 Spy dCas9 更快。在存在靶向 RNA 向导的情况下,模拟和细胞成像均证实 Lb dCas12a 变体在找到特定靶位点方面更快、更高效。我们的工作展示了使用强大的框架工作放宽 Spy dCas9 和 Lb dCas12a 中的 PAM 要求的权衡,这可以应用于其他核酸酶以量化它们的 DNA 靶标搜索。
尽管对流行病学具有重要意义,但在寄生虫寄生虫相互作用的研究中,寄生虫暴露的寄主时代通常被忽略。在这里,我们比较了寄生螨虫销毁子的影响,以及相关的致病病毒DWV对宿主的不同生命阶段,西部蜂蜜蜜蜂Apis Mellifera的影响。与成年人相比,蜜蜂的想象前阶段更容易受到螨虫的寄生和病毒感染的影响。螨虫蜜蜂和DWV基因型中的较高病毒载荷似乎不是观察到的差异的驱动因素,而差异似乎与宿主的免疫能力有关。这些结果支持了免疫和生长之间的权衡,使PUPA参与了高能量的变态过程,更容易受到寄生虫和病原体的影响。这可能对寄生虫的毒力进化和蜜蜂健康具有重要意义。我们的结果突出了流行病学建模中宿主年龄和生命阶段的重要作用。此外,我们的研究可以阐明要解决这种寄生虫的可持续管理的复杂蜂蜜蜂关系的新方面。