摘要 在不适当的洗涤和干燥条件下,浴巾容易滋生细菌,对人体健康构成威胁。本研究调查了大专学生使用浴巾的细菌污染情况以及与浴巾使用相关的洗涤和干燥习惯。通过培养法,从大专学生拥有的 50 条浴巾的标准面积(0.96cm 2 )上取样拭子,分离出大肠菌群(23,46%),包括大肠杆菌(18,36%)。男学生毛巾上的大肠菌群污染率(15,60%)高于女学生(8,32%)[χ²(1) = 3.87,p = 0.049]。男性(13,52%)的大肠杆菌污染也比女性(5,20%)更常见[χ²(1) = 5.44,p = 0.019]。男用毛巾中大肠菌群的平均菌落计数为 29.68,女用毛巾中为 21.32(U = 417,p = 0.027),男用毛巾中大肠杆菌的平均菌落计数为 30.16,女用毛巾中为 20.84(U = 429,p = 0.008)。生化试验鉴定出 7 个属的细菌、4 个大肠菌群:大肠杆菌、粘质沙雷氏菌、弗氏柠檬酸杆菌、肠杆菌属和 3 个非大肠菌群:霍乱弧菌、伤寒沙门氏菌和产碱杆菌属。7 名男学生(28%)和 16 名女学生(72%)报告称他们在使用毛巾两周后会清洗毛巾。使用一至两个月后清洗毛巾的男生(16 名,64%)多于女生(8 名,32%)。学生毛巾的细菌污染引起了人们对接触潜在有害细菌风险的担忧,并呼吁学生采取适当的毛巾卫生习惯。
生物膜是遵循表面的微生物群落。这些包裹在称为细胞外聚合物物质(EPS)的粘性物质中,形成了较高的多细胞结构,使微生物可以抵抗不利的环境条件,例如营养不良,干旱,极端,宿主免疫反应,以及许多其他司法干预措施(Ciofu et al.,202 al。,pai等)。生物膜上还可以在各种非生物表面上形成致病性微生物,例如在食品加工和医疗领域遇到的表面,从而使封闭的微生物持续存在,即使经过定期的清洁和消毒过程,也可能导致食物疾病的交叉抗击,又可能会造成30次疾病爆发(又有30次疾病)。作为有关食品和临床部门的非生物表面病原体生物膜的这项研究主题的编辑,我们很高兴收到和审查该领域内的一些有趣的研究文章。本社论的布里(Brie)报告了每个被接受的文章的主要发现,结论和观点。乳制品加工厂为生物膜发育提供了理想的环境,这是由于牛奶残留物富含碳水化合物,蛋白质和脂肪(Yuan等,2023)。,杆菌属。由于在耐热孢子中分化的能力,即使在巴氏杀菌后也生存(Shemesh and Ostrov,2020)。Catania等人进行的工作。因此,它们的存在对乳制品行业引起了重大关注,因为这些细菌可能会不断污染食品加工流,最终影响乳制品的安全性并导致它们的变质。证明了枯草芽孢杆菌和蜡状芽孢杆菌分离物是从加工奶酪产品中存活的热处理,很容易在常见的食物接触上形成生物膜
古细菌是人类微生物组的研究成分。在这项研究中,通过全基因组shot弹枪测序分析了来自不同地区的60名健康成年人的肠道考古组和BAC TERIOME。古细菌无处不在,在广泛的丰度中发现了高达7.2%。主要的古细菌门是甲烷杆菌,特别是家族甲烷科,涵盖了50个样本中超过50%的古细菌。先前被低估的热质量,主要由甲基菌科菌科组成,主要由10名受试者(> 50%)组成,并且在其他所有受试者中都存在。hal ubacteriota,唯一的其他古细胞门,以微不足道的浓度发生,除了两个样品(4.6 - 4.8%)。这一发现证实了人类的肠道考古体主要由甲烷生物体组成,在已知的甲烷生成途径中:i)Co 2的氢化含量减少是前主要的,是甲苯基抗逆性杆菌属,物种甲烷基revibacter smithii是主要的smithii smithii,这是样品中主要的甲苯胺史密斯。 ii)涉及甲烷二菌的第二个途径是甲基化合物的氢养分还原。 iii)似乎不存在乙酸盐或甲基化合物的声誉。共发生的分析允许在古细菌和细菌之间揭示塑造微生物群落的整体结构的相关性,从而可以描绘出人类肠道古学的更清晰图片。
摘要。Sabaria E,Yasmin Y,Ismail YS,Bessania MA,Putri I,FitriL.2024。从IE Seum温泉,Aceh Besar,印度尼西亚作为蛋白酶酶的生产者的嗜热细菌表征。生物多样性25:1867-1874。嗜热细菌是微生物,可以在超过75°C的高温环境中生存。IE Seum Hot Springs在Aceh Besar,印度尼西亚是这些嗜热细菌居住的地方。在这种极端条件下,蛋白质和酶通常是变性的,由于它们适应和产生蛋白酶等酶的能力而引起了这些感兴趣的细菌。蛋白酶称为蛋白水解酶,可以在经济和医疗领域应用。这项研究旨在通过分析16S rRNA基因并使用生化测试来表征它们,旨在隔离和鉴定在IE Seum温泉中具有最高蛋白酶产生潜力的嗜热细菌。基于结果,获得了七个嗜热细菌分离株,即BT1,BT2,BT3,BT4,BT4,BT5,BT6和BT7,每种都显示出不同的菌落特征。生化测试还揭示了每个分离物的代谢活性。在这些分离株中,BT4表现出最高的蛋白水解指数(4.65)。此外,16S rRNA基因序列分析表明,BT4菌株属于芽孢杆菌属,与芽孢杆菌,B。licheniformis和B. sonorensis具有很高的相似性。这些发现表明,BT4作为嗜热蛋白酶酶的来源具有显着的潜力。
背景:如果治疗不当,超广谱 β-内酰胺酶 (ESBL) 正在成为常见的院内病原体,并且是导致死亡和发病的重要原因。当务之急是找到有效的治疗方案来对付产生 ESBL 的细菌。本研究旨在评估超广谱 β-内酰胺酶的产菌对四环素类药物的体外敏感性模式。方法:这项描述性横断面研究在拉瓦尔品第国立科技大学陆军医学院微生物学系进行了 6 个月。本研究纳入了 78 个非重复分离株。使用 Jarlier 等人的方法进行 ESBL 检测。然后使用改良的 Kirby Bauer 纸片扩散法测试四环素类药物(如四环素、强力霉素、米诺环素和替加环素)的体外敏感性。在孵育期结束后测量抑菌圈,并根据 CLSI 和 FDA 指南进行解释。结果:分离株中大肠杆菌约占56.4%,肺炎克雷伯菌约占28.2%,肠杆菌属约占10.26%,产酸克雷伯菌和不动杆菌属各占2.6%。ESBLs对替加环素最敏感,对米诺环素的敏感性次之,对强力霉素和四环素的敏感性最差。结论:在四环素类中,替加环素对产ESBL的革兰氏阴性杆菌体外敏感性最好。关键词:超广谱β-内酰胺酶(ESBLs),四环素,敏感性
摘要这项研究的目的是对来自波兰北部的一个地理位置收获的蜂蜜的全基因组分析和评估细菌分离株的抗菌潜力。总共源自三个蜂蜜样品,总共获得了132个菌株,CFAM的抗菌活性(无细胞后培养培养基)用作菌株选择和详细基因组研究的标准。两个测试的分离株(SZA14和SZA16)被归类为帕拉酸芽孢杆菌,基于其ANI和系统发育分析的相关性,一个分离株(SZB3)为枯草芽孢杆菌。分离株SZA14和SZA16是从相同的蜂蜜样品中收获的,核苷酸同一性为98.96%。已经发现所有三个分离株都是不同抗菌化合物的潜在生产者。二次代谢产物基因组挖掘管道(抗石)鉴定了14个基因簇编码为非核糖体肽合成酶(NRP),Polyketide合酶(PKSS)和核糖体合成的核糖体合成和核糖体合成的,并且是经过转化的肽(Ripps),这些肽是新型替代品的替代品。Bagel4分析揭示了分离株SZA14和SZA16中有九个假定的基因簇(包括两个分离物中存在的六个类似的簇,编码肠球菌NKR-5-3B,Haloduracin-alpha,sonorensin,sonorensin,bottromycin and comx2,comx2,comx2,comx2,comx2,suloduracin-alloduracin- SZB3(能力因子,孢子杀伤因子,枯草脂蛋白A和乙酰肽)。这项研究的结果证实了蜂蜜衍生的芽孢杆菌属。菌株可以被认为是各种抗菌剂的潜在生产者。
摘要:不植物阴道菌群(DVM)干扰阴道环境,包括pH,代谢物,蛋白质和细胞因子谱。这项研究调查了DVM对40名韩国孕妇阴道环境的影响,并确定了可预测的出生结果生物标志物。宫颈阴道流体(CVF)样品,检查pH值,并储存在-80℃以进行进一步分析。样品分为全学期(FTB,n = 20)和早产(PTB,n = 20)。微生物群在V1 – V9区域中进行了分析。确定靶向代谢物,TLR-4和细胞因子的水平。PTB(> 4.5)的CVF的pH值明显高于FTB(> 3.5)的CVF(p <0.05)。新生儿妊娠年龄在分娩,出生体重和Apgar评分之间的分数显着不同。在FTB中,有益的乳酸杆菌属的相对丰度,例如Gasseri,Jensenii乳酸乳杆菌,Jensenii和双歧杆菌较高,而致病性肠球菌肠球菌,葡萄球菌,Prevotella,Prevotella,Prevotella,reeaeaplasma parvum,sppebma parvium,sppore sppore corneboccus faecalis ftb。在PTB中较高。乙酸,甲醇,TLR-4和TNF-α水平与分娩和出生体重时的妊娠年龄负相关。此外,乙醇,甲醇,TLR-4,IL-6,IL-1β和TNF-α水平与琥珀酸酯,乙酸,乙酸乙酸盐,甲酸盐,甲酸盐和氨和氨和氨水呈正相关。总体而言,DVM通过阴道中的病原分子诱导早产。
摘要:属于芽孢杆菌属的物种会产生许多有利的细胞外临界,这些细胞外象征在商业规模上具有巨大的应用,用于纺织品,洗涤剂,饲料,食品和饮料行业。这项研究旨在与当地环境分离出有效的热耐淀粉和纤维素细菌。使用盒子 - 贝恩肯的设计响应表面方法论,我们进一步优化了淀粉酶和纤维素酶活性。通过16S rRNA基因测序将分离株鉴定为枯草芽孢杆菌Qy4。这项研究利用马铃薯果皮废料(PPW)作为生物材料,在开放环境中过度倾倒。干燥PPW的营养状况是通过近距离分析确定的。在250 ml erlenmeyer量中进行了所有实验运行,该量含有酸处理的PPW作为底物,由耐热的枯草脂肪酸盐Qy4在37°C下孵育72 h,在浸没发酵中孵育72 h。结果表明,与酸治疗相比,稀释的H 2 SO稀释辅助高压灭菌治疗有利于产生更多的淀粉酶(0.601 IU/mL/min),而在稀酸治疗中观察到高纤维素酶的产生(1.269 IU/mL/min),并且在稀酸治疗中观察到,并且与酸辅助治疗相比非常有效。确定的P值,F值和系数证明了模型的重要意义。这些结果表明,PPW可以可持续地用于生产酶,这些酶在各种工业阵列中,尤其是在生物燃料生产中。
zeeshan.haider@imbb.uol.edu.pk摘要β半乳糖苷酶是水解酶,可以在真菌,细菌和酵母等微生物以及植物,动物细胞和重组来源中找到。该酶用于两个目的:从乳糖不耐症的人那里消除乳糖并创建半乳糖化的商品。这项研究旨在隔离和优化从奶牛场附近收集的土壤样品中产生β-半乳糖苷酶的微生物。用于筛选X-gal(5-溴-4-氯-3- indoyl-β-d-半乳乙酰糖苷),使用具有蓝色的糖苷酶活性的指标,是一种蓝色的糖苷酶活性的指标。用pHAT7获得最大的酶产生,温度为37ºC。在蔗糖,硫酸铵,硫酸镁和小麦粉中观察到最大产生的其他因素。在酶测定中ONPG(正硝基苯基-β-半乳糖苷)中用作底物。 这些结果揭示了乳杆菌属。 产生从具有有利特征的土壤样品中获得的β-半乳糖苷酶在食品工业中具有至关重要的作用。 引言β-半乳糖苷酶是一种糖苷水解酶,通常称为乳糖酶。 该酶负责通过在水存在下打破糖苷键来使ꞵ-半乳糖苷酶的水解产生,从而将其分解成简单的单糖。半乳糖和酒精。 作为一个活跃的酶,β-半乳糖苷酶可以将β连锁半乳糖的残基与各种化合物分开,从而将乳糖散发到半乳糖和葡萄糖中。 最早发现的水解体之一是β-半乳糖苷酶(Husain,2010)。在酶测定中ONPG(正硝基苯基-β-半乳糖苷)中用作底物。这些结果揭示了乳杆菌属。产生从具有有利特征的土壤样品中获得的β-半乳糖苷酶在食品工业中具有至关重要的作用。 引言β-半乳糖苷酶是一种糖苷水解酶,通常称为乳糖酶。 该酶负责通过在水存在下打破糖苷键来使ꞵ-半乳糖苷酶的水解产生,从而将其分解成简单的单糖。半乳糖和酒精。 作为一个活跃的酶,β-半乳糖苷酶可以将β连锁半乳糖的残基与各种化合物分开,从而将乳糖散发到半乳糖和葡萄糖中。 最早发现的水解体之一是β-半乳糖苷酶(Husain,2010)。产生从具有有利特征的土壤样品中获得的β-半乳糖苷酶在食品工业中具有至关重要的作用。引言β-半乳糖苷酶是一种糖苷水解酶,通常称为乳糖酶。该酶负责通过在水存在下打破糖苷键来使ꞵ-半乳糖苷酶的水解产生,从而将其分解成简单的单糖。半乳糖和酒精。作为一个活跃的酶,β-半乳糖苷酶可以将β连锁半乳糖的残基与各种化合物分开,从而将乳糖散发到半乳糖和葡萄糖中。最早发现的水解体之一是β-半乳糖苷酶(Husain,2010)。乳糖 - 水解酶,β-半乳糖苷酶是一种水解乳糖的酶,因此被认为是乳制品行业的基本酶。β-半乳糖苷酶是一种极为必要的酶,它通过破坏乳糖(牛奶甜糖)来完全消化牛奶。这种类型的酶主要出现在微生物中(Burn,2012),动物器官和植物,例如杏仁,苹果,桃子和杏子。除了其水解作用外,它还用于生产含有乳糖的人含量较低的食品。对于使用环境污染物奶酪乳清的利用也至关重要(Gandhi等,2018),通过降低
摘要 - 在土壤微生物组的组成中,有许多能够促进植物生长的微生物,它们被称为植物生长促进微生物。这项研究的目的是确定多功能微生物单独或组合使用对玉米植株的地上部、根部和总生物量生产、气体交换、常量营养素含量、产量成分和谷物产量的影响。该实验在温室中以完全随机设计进行,重复四次。26 个处理包括用根际细菌芽孢杆菌属(BRM 32109、BRM 32110 和 BRM 63573)、伯克霍尔德菌(BRM 32111)、假单胞菌属(BRM 32112)、粘质沙雷氏菌 BRM 32113、沙雷氏菌属对玉米种子进行单独或组合微生物化。 (BRM 32114)、巴西固氮螺菌(Ab-V5)和固氮螺菌属(BRM 63574)、从真菌 Trichoderma koningiopsis(BRM 53736)中分离的菌株以及对照处理(未施用微生物)。在第 7 天和第 21 天,分别在土壤和植物中再施用两次相同的处理。单独或组合施用的微生物可显著提高玉米植物生物量 49%、气体交换 30%、常量营养素含量 36% 和谷物产量 33%。分离物 BRM 32114、Ab-V5、BRM 32110 和 BRM 32112 以及组合 BRM 32114 + BRM 53736、BRM 63573 + Ab-V5 和 BRM 32114 + BRM 32110 为玉米带来了更好的效益,这使我们推断出使用有益微生物会显著影响玉米植株的发育。关键词:根瘤菌。真菌。共接种。产量。玉米。