作为 Ferd Beer 和 Russ Johnston 所著书籍的出版商,我们经常被问到,他们怎么会碰巧合在一起编写这两本书呢?他们一个在利哈伊大学,另一个在康涅狄格大学。这个问题的答案很简单。Russ Johnston 的第一份教职是在利哈伊大学的土木工程和力学系。在那里,他遇到了 Ferd Beer,后者两年前加入该系,负责力学课程。Ferd 出生于法国,在法国和瑞士接受教育(他拥有索邦大学的硕士学位和日内瓦大学的理论力学博士学位)。二战初期,他在法国军队服役后来到美国,并在威廉姆斯学院的威廉姆斯-麻省理工学院联合艺术与工程专业任教四年。Russ 出生于费城,拥有特拉华大学的土木工程学士学位和日内瓦大学的力学博士学位。麻省理工学院结构工程专业学位。费德很高兴地发现,这位主要被聘为研究生结构工程课程老师的年轻人不仅愿意而且渴望帮助他重组力学课程。两人都认为,这些课程应该从一些基本原理开始讲授,如果以图形方式呈现给学生,所涉及的各种概念将最容易被理解和记住。Toge
引用格式 : 周爽 , 苏景林 , 刘晓星 , 等 .多孔陶瓷材料力学特性的离散单元法定量模拟 .中国科学 : 物理学力学天文学 , 2019, 49: 064602 Zhou S, Su J L, Liu X X, et al.Quantitative simulation of mechanical properties of porous ceramic materials by discrete element method (in Chinese).Sci Sin-Phys Mech Astron, 2019, 49: 064602, doi: 10.1360/SSPMA2018-00332
詹姆斯·M·基尔 (James M. Gere) (1925-2008) 分别于 1949 年和 1951 年在伦斯勒理工学院获得土木工程学士和硕士学位。他先在伦斯勒理工学院担任讲师,后来担任研究员。他获得了首批 NSF 奖学金,并选择在斯坦福大学学习。他于 1954 年获得博士学位,并被聘为土木工程系教师,开始了 34 年的职业生涯,带领学生研究力学、结构和地震工程等具有挑战性的课题。他曾担任工程系主任和副院长,并于 1974 年在斯坦福大学共同创立了约翰·A·布鲁姆地震工程中心。1980 年,吉姆·基尔还成为斯坦福地震防备委员会的创始负责人。同年,他被邀请成为首批研究地震灾区中国唐山的外国人之一。吉姆于 1988 年从斯坦福大学退休,但仍然是斯坦福社区的活跃和最有价值的成员。
1.1 简介 1 1.1.1 材料力学和弹性理论 1 1.1.2 历史发展 2 1.2 本书范围 3 1.3 分析和设计 4 1.3.1 分析在设计中的作用 6 1.3.2 安全系数的选择 6 1.3.3 案例研究 7 1.4 平衡条件 8 1.5 应力的定义和分量 9 1.5.1 符号约定 11 1.5.2 剪应力相等 12 1.5.3 应力的一些特殊情况 12 1.6 内部力合力和应力关系 13 1.6.1 应力的基本公式 15 1.6.2 组合应力 17 1.7 倾斜截面上的应力 17 1.7.1 轴向荷载构件 18 1.8 物体内部的应力变化 20 1.8.1 平衡方程 20 1.9 平面应力变换 23 1.9.1 应力张量 25 1.9.2 平面应力状态的极坐标表示 25 1.9.3 平面应力状态的笛卡尔表示 25
1.1 简介 1 1.1.1 材料力学和弹性理论 1 1.1.2 历史发展 2 1.2 本书范围 3 1.3 分析和设计 4 1.3.1 分析在设计中的作用 6 1.3.2 安全系数的选择 6 1.3.3 案例研究 7 1.4 平衡条件 8 1.5 应力的定义和分量 9 1.5.1 符号约定 11 1.5.2 剪应力相等 12 1.5.3 应力的一些特殊情况 12 1.6 内部力合力和应力关系 13 1.6.1 应力的基本公式 15 1.6.2 组合应力 17 1.7 倾斜截面上的应力 17 1.7.1 轴向荷载构件 18 1.8 物体内部的应力变化 20 1.8.1 平衡方程 20 1.9 平面应力变换 23 1.9.1 应力张量 25 1.9.2 平面应力状态的极坐标表示 25 1.9.3 平面应力状态的笛卡尔表示 25
现在对常见的层压板类型(如正交层压板和准各向同性层压板)进行比较。图 1.2 显示了各种纤维、金属和复合材料的比强度与比模量的关系图。
预先存在的位错对极小尺度上金强度的影响 - 使用 EBSD 数据表征纳米压痕之前的局部位错密度,Paula Guglielmi 等人。.......................................................................................................................................................................................................................................... ........................................................................................................................................................................................................................ ........................................................................................................................................................................................................................ ........................................................................................................................................................................................................ 96
本报告涵盖了通过搭接剪切、TGA、DSC 和电气测试评估纳米 SiC 粒子对环氧树脂机械、热和电性能影响的研究结果。还研究了填充有微 SiC 粒子的环氧复合材料以进行比较。详细讨论了性能改进的机制。结果表明,在相同的负载下,硅烷处理的纳米 SiC 填充纳米复合材料具有最佳性能。添加硅烷处理的纳米 SiC 粒子后体积电阻率的下降、介电常数“的增加和损耗角正切 tanðÞ 的增加小于添加其他填料后体积电阻率的下降、介电常数“的增加和损耗角正切 tanðÞ 的增加。纳米粒子的硅烷处理改善了每项性能,包括增加了剪切强度、热稳定性、体积电阻率并降低了“和()。纳米SiC粒子的加入显著提高了环氧树脂的剪切强度、介电常数和界面黏度,同时略微提高了环氧树脂的热稳定性。8vol.%硅烷处理的纳米SiC/环氧树脂复合材料具有最高的剪切强度10.6MPa,与纯树脂相比最大提高了80%。它还具有良好的介电性能的温度独立性和足够的体积电阻率,满足一些微电子材料的要求。关键词:SiC/环氧树脂复合材料/纳米复合材料/机械性能/热性能/介电性能/