iii-V半导体化合物形成了各种离散的核心材料系统,这些系统的核心材料系统最终完全集成了光子组件(激光器和光学放大器,调节器,光电探测器和被动光功能)以及高强度的电子设备。III-V化合物的一个关键特征是它们表现出直接的带隙,从而有效地产生和放大光,而不是间接的带隙半导体(如硅和锗)。自上世纪的六十年代以来,这导致了广泛的半导体激光类型(CW,可调,多波长,脉冲,频率 - 梳子,单光子,单个光子)的发展。通过将不同的III-V化合物合金调整材料的电子带隙,可以使光的波长调节到相当宽的频谱NIR范围内的所需值。基于GAA(〜850-1100 nm)和INP(〜1200-1700 nm)的材料是最突出的系统,主要由光纤通信驱动。借助此应用领域,INP在具有多种结构的半导体激光器的整合中发挥了较高的作用,从而可以在光子整合电路中对光子进行操纵,以促进多种功能。最近,基于燃气的二极管激光器(1-8-3.0μm)吸引了对光源在传感应用中的兴趣。
Stöber方法传统上用于创建非晶态玻璃样胶体,一直是材料科学的基石。但是,其应用仅限于狭窄的材料系统范围。HU研究团队现在扩大了该方法的范围,以包括MOF和CPS,利用基本蒸气扩散技术来控制生长动力学。这种新颖的合成途径可导致均匀且定义良好的MOF和CP球。
金属纤维的出现导致了通过不同制造方法开发不同纤维增强复合材料系统。利用金属纤维作为单一增强材料可以创造具有独特物理结构和对许多性能产生协同效应的全新材料。钢、铝、钛和铜是用于航空航天、船舶、汽车和结构应用等行业的金属纤维的例子。此外,结合各种材料系统(金属纤维 - 传统纤维)来制造混合复合材料的可能性允许成本和性能的无限变化。一般来说,金属以金属纤维金属层压板 (FML) 的形式提供,或以细丝和网状纤维的形式提供。与金属片形式相比,文献中对细丝和网状纤维的研究仍然有限。因此,这项工作重点回顾了细丝和网状金属的加工技术、性能和应用。本文详细介绍了金属纤维的应用、生产方法以及几种类型和形式。此外,还回顾了金属纤维增强聚合物复合材料的性能和应用。还回顾了金属化纤维的应用以及金属纤维与合成和天然纤维增强聚合物复合材料的混合。总之,部分探索的细丝和网状纤维形式的潜力似乎具有出色的机械、热和其他材料性能。钢纤维是最常用的金属纤维,因为它具有成本效益、可用形式多样、尽管重量很重但性能很高。
近期文献构成了该方法的主要部分。特别是,研究了与智能或潜在智能材料、结构和控制相关的文献。还联系了该领域的一些研究人员,以获取有关该主题的最新信息。还访问了几个实验室”智能材料系统和结构中心、弗吉尼亚理工学院和州立大学的光纤光电研究中心以及弗吉尼亚大学的智能材料处理实验室。实验室访问摘要见本报告的附录。
本文介绍了一种基于生物榜样设计 4D 打印自成形材料系统的材料编程方法。植物启发了许多自适应系统,这些系统无需使用任何操作能量即可移动;然而,这些系统通常以简化的双层形式设计和制造。这项工作介绍了用于 4D 打印具有复合机制的仿生行为的计算设计方法。为了模拟运动植物结构的各向异性排列,使用基于挤压的 3D 打印在中观尺度上定制材料系统。该方法通过将缠绕植物(Dioscorea bulbifera)的力产生原理转移到自紧夹板的应用来展示。通过张紧其茎螺旋,D. bulbifera 对其支撑物施加挤压力,以提供对抗重力的稳定性。D. bulbifera 的功能策略被抽象并转化为定制的 4D 打印材料系统。然后评估这些仿生运动机制的挤压力。最后,在腕前臂夹板(一种常见的矫正装置)中对自紧功能进行了原型设计。所提出的方法可以将新颖且扩展的仿生设计策略转移到 4D 打印运动机制中,从而进一步为可穿戴辅助技术及其他领域的新型自适应创作打开设计空间。
在本研究中,我们提出了一种大幅提高 LPS 合成的 Bi 2 Te 3 基材料的热电性能的策略。通过对添加 SiC 纳米粒子(20 纳米)的 LPS 合成的 Bi 2 Te 3 样品进行低温热处理,在 340 K 时实现了 1.05 的高峰值 ZT。该值几乎是之前报道的 LPS 合成的 Bi 2 Te 3 在 450 K 时的 ZT 0.56 的两倍。性能的大幅提高可部分归因于随后的热处理,这是一种控制晶格缺陷和载流子迁移率的有效方法。36,37 除了热处理之外,添加 SiC 纳米粒子进一步降低了晶格热导率,同时保留了电子特性,从而进一步提高了 ZT。 38 – 43 此外,从这项工作中还可以看出,小的 SiC 纳米颗粒分散在 (Bi,Sb) 2 Te 3 材料中比大纳米颗粒更能有效地提高其热电性能。总的来说,从这项工作中得出的两个关键见解可以广泛应用于其他材料系统。首先,这项工作中报道的 LPS 代表了热电合成中高温工艺的一种能量上和商业上有吸引力的替代方案。其次,与化学掺杂不同,使用小纳米颗粒 (即 SiC) 掺杂的纳米复合材料可以引入到其他材料系统中,而不会严重影响它们现有的化学结构,从而影响它们的能带结构和传输特性。
实施流程改进:该项目提出了一种分层方法来定义和缓解与将 OOA 材料系统扩展到通常与海底战斗人员相关的厚、大表面积组件相关的问题。使用试样级测试来确定基线结构性能,然后进行中等尺寸的部件制造和测试活动,以展示中级可扩展性和性能转换,从而降低与更大规模原型相关的风险。还进行了寿命测试,以提供与模具中延长寿命相关的机械击倒。
课程目标 “材料科学导论”带领学生了解从原子到设备和应用的不同长度尺度的迷人材料世界,从文明初期材料发展的历史视角开始,到当今推动现代社会发展的先进材料。您将获得有关三种主要材料系统(即金属、聚合物和陶瓷)的键合、晶体学、微观结构和相的基本知识。了解这些方面将使您能够设计和控制相关的材料属性。预期学习成果 (ILO) 在本课程结束时,您(作为学生)将能够: