1化学系,伊奥尼纳大学有机化学和生物化学部,45110 IOANNINA,希腊2植物分子生物学实验室,农业作物生产和农村环境系,沙质大学,38446 Magnesia,38446 Magnesia,Greece 3 Intersied Instute of Applied Biosciences(erteried 7)希腊塞萨洛尼基4农村经济局,埃皮鲁斯地区,45221 IOANNINA,希腊5号,植物和食品科学系55221,巴里大学(Dispa),巴里大学,巴利大学70126,意大利70126,意大利6实验室6个发育生物学和分子神经生物学系实验室。希腊的亚历山大罗普利斯; mgrigor@mbg.duth.gr 7分子法规和诊断技术实验室,分子生物学与遗传学系,德拉斯民主分子大学,68100 Alexandroupolis,希腊8号,81440 Myrina Incustling and Intuctuntion of Materion and Incuption Intuctuntion of Food Science and Nutrition,Intuction Intuctiant of Food Science and Nutrition,Intuction Instuntial Instuntial Instuntion of Intunity Institution of Intuntical and Instuntion inst Instuction of Intunity Instuntion 4希腊Ioannina *信件:atzakos@uoi.gr;电话。: +30-26510-08387
2021年,加利福尼亚生物多样性研究所成立了一个潮间生物多样性工作组(IBWG),以共享信息,确定需求和挑战,以理解和保留跨性别的生物多样性,包括开发为加利福尼亚州的互际生物体开发公共访问的基因数据库。In 2023, the California Legislature subsequently appropriated a one-time General Fund investment of $9.5 million in the Budget Act of 2023 to support the creation of an Intertidal Biodiversity DNA Barcode Library (Intertidal Library) modeled after past barcode library development efforts previously funded by the California Legislature for Insect, Fungal, and Soil Biodiversity, consistent with the objectives of Executive Order B-54-18 and Executive Order N-82-20促进并保护全州生物多样性。
摘要:高通量筛选是药物研发、癌症治疗和疾病诊断中不可或缺的技术,可以大大减少时间成本、试剂消耗和人工费用。本文详细介绍了四种灵敏度高、可及性的高通量筛选方法。荧光、DNA、重金属和非金属同位素条形码通常标记抗体、蛋白质和糖类以识别细胞,分别通过流式细胞术、第二代 DNA 测序、质谱流式细胞术和第二离子质谱法进行检测。将二进制信息编码在条形码中、用条形码标记单个细胞、一起进行细胞表征以及通过条形码识别属于单个细胞的结果是高通量筛选的主要步骤。详细介绍了四种数字条形码在体外和体内高通量筛选中的应用,并总结了它们的优缺点。高通量筛选为多学科研究提供了强大的平台,极大地促进了药物研发、疾病诊断、癌症治疗等的进程。关键词:高通量筛选,荧光条形码,DNA条形码,重金属条形码,非金属同位素条形码■引言
莫桑比克的鱼类学省份是全球鱼类分歧的热点。在这项研究中,我们应用了DNA条形码,以鉴定莫桑比克海岸的鱼类动物的组成。确定了143种属于104属,59个家庭和30个命令的物种。Species内COI序列的总体K2P距离范围为0.00%至1.51%,而种间距离范围为3.64%至24.49%。此外,根据IUCN红色的受威胁物种的红色清单,露出15种受威胁物种,其中弹性分支是最有代表性的群体。另外,该研究还发现了以前在该地理区域中未记录的四个新物种,包括Boleophthalmus dussumieri,Maculabatis Gerrardi,Hippocam-pus kelloggi和Miniatus。这项研究代表了利用分子参考来探索莫桑比克沿岸的鱼类动物区系的第一个实例。我们的结果表明,DNA条形码是对莫桑比克水域中鱼类鉴定和描述的可靠技术。本研究中建立的DNA条形码库将是促进对鱼类多样性和指导未来保护计划的理解的宝贵资产。
通用系统发育标记,例如核核糖体内部转录序列(ITS),特别是ITS1和ITS2,通常用于估计环境样品中的真菌多样性。然而,许多研究报告了ITS1和ITS2在记录真菌多样性方面的性能和功效上的差异。为了更好地理解使用ITS1与ITS2的含义,需要对多种真菌分类群的全面表示,对于对它们在多个真菌分类单元中使用的荟萃分析是必要的。为了解决这个问题,进行了详尽的文献综述,以比较和对比ITS1和ITS2作为有效的DNA条形码。公开可用的数据集用于合成代表多种真菌分类群的模拟真菌群落,并测试了两个扩增子的功效,并将其与完整的效果进行了比较。这项研究假设ITS1和ITS2对于解决真菌分类单元的分辨率同样有效。具体来说,当比较系统发育分辨率的ITS1和ITS2时,通过两种方法都确定了一组重叠的分类单元,而某些分类单元则由单个其扩增子更好地解决。此处介绍的评估应使读者可以更好地理解ITS1与ITS2在研究真菌多样性和生态学方面的用途和局限性,并使他们能够开发出改进的方法,以更好地分类分辨率,并有助于识别潜在的新物种。
鹿产品 elaphus)被认为是真正的中国中药(TCM)材料。 鹿具有很高的经济和装饰价值,导致形成了特征性的鹿行业,以在中医,健康食品,宇宙和其他发展和利用领域的处方准备中形成。 由于对鹿生产的需求量很高,产品昂贵且生产有限,但合法使用鹿只限于两种Sika Deer和Red Deer;禁止其他野鹿狩猎,因此有许多伪造产品的混合和掺假案例等。 有很多报道说其他动物(猪,牛,绵羊等) 组织或器官通常用于掺假和混乱,导致鹿传统医学和鹿产品中贸易欺诈的功效不佳。 以快速有效的方式对鹿产物进行身份验证,该分析使用了22种鹿产品(鹿角,肉,骨骼,胎儿,阴茎,尾巴,皮肤和羊毛),它们是盲型样品的形式。 使用修饰方案的总DNA提取,成功地从盲样品中得出了对PCR有用的DNA。 通过BLAST和系统发育聚类分析评估了三个候选DNA条形码基因座,COX1,CYT B和RRN12的歧视强度。 在爆炸分析中,22个盲样品在经过测试的三个基因基因座中获得了100%匹配的身份。 日本和七个被认为起源于西卡鹿的盲样样本被确定为c。elaphus)被认为是真正的中国中药(TCM)材料。鹿具有很高的经济和装饰价值,导致形成了特征性的鹿行业,以在中医,健康食品,宇宙和其他发展和利用领域的处方准备中形成。由于对鹿生产的需求量很高,产品昂贵且生产有限,但合法使用鹿只限于两种Sika Deer和Red Deer;禁止其他野鹿狩猎,因此有许多伪造产品的混合和掺假案例等。有很多报道说其他动物(猪,牛,绵羊等)组织或器官通常用于掺假和混乱,导致鹿传统医学和鹿产品中贸易欺诈的功效不佳。以快速有效的方式对鹿产物进行身份验证,该分析使用了22种鹿产品(鹿角,肉,骨骼,胎儿,阴茎,尾巴,皮肤和羊毛),它们是盲型样品的形式。使用修饰方案的总DNA提取,成功地从盲样品中得出了对PCR有用的DNA。通过BLAST和系统发育聚类分析评估了三个候选DNA条形码基因座,COX1,CYT B和RRN12的歧视强度。在爆炸分析中,22个盲样品在经过测试的三个基因基因座中获得了100%匹配的身份。日本和七个被认为起源于西卡鹿的盲样样本被确定为c。据揭示了12个盲样样品的原始种类正确标记了,而三个被认为起源于红鹿的盲样样品被鉴定为c。Elaphus,Dama Dama和Rangifer Tarandus。DNA条形码分析表明,所有三个基因座都能够区分这两个脑物种并识别出掺假物质的存在。DNA条形码技术能够在识别鹿产物中的原点物种方面提供了一种有用的敏感方法。
stelliferinae是Sciaenidae的第三大特定亚科,有51种公认的物种排列在五个属中。从形态学和分子数据中得出的系统发育支持该亚科的单性别,尽管对该群体的属间关系或物种多样性尚无一般共识。我们使用了细胞色素氧化酶C亚基I(COI)基因的条形码区域来验证基于自动条形码间隙发现(ABGD),广义混合Yule Yule ColeScence(GMYC)和Bayesian Poisson Tree Process(BPTP)方法的基于自动条形码间隙发现(ABGD)的界定物种的界定。在一般中,这些不同方法的结果是一致的,划定了30-32个分子操作分类单元(MOTUS),其中大多数与有效物种相吻合。标志性的Menezesi和Stellifer Gomezi的标本归因于一种物种,这与该属的最新评论不同意。证据还表明,odon-toscion xanthops和corvula宏观属于单个MOTU。相比之下,证据还表明在牙肠牙本质和Bairdiella Chrysoura中都存在明显的谱系。这种结果与神秘物种的存在兼容,这是由遗传差异和单倍型谱系支持的。因此,本研究的结果表明,标志性的存在中未描述的多样性,这加剧了对这种亚科中鱼类的大量分类学复习的需求。
全球生物多样性正以惊人的速度下降,迫切需要进行大规模监测以了解其变化及其驱动因素。虽然传统的物种分类学鉴定耗时耗力,但与基于 DNA 的方法相结合可以扩大监测活动的规模,以实现更大的空间覆盖范围和增加采样工作量。但是,当需要估计每个物种的个体数量和/或生物量时,基于 DNA 的方法仍然存在挑战。已有多种方法学进展可提高 DNA 宏条形码用于丰度分析的潜力,但仍需要进一步评估。在这里,我们讨论了实验室以及一些生物信息学对 DNA 宏条形码工作流程的调整,以了解它们从节肢动物群落样本中估计物种丰度的潜力。我们的综述包括标本拍照等实验室前处理方法、使用掺入 DNA 作为内标等实验室方法以及校正因子等生物信息学进展。我们得出的结论是,标本摄影与 DNA 条形码相结合目前最有可能实现对每个物种个体数量和生物量估计的估计,但诸如峰值和校正因子等方法是有希望进一步研究的方法。
摘要:在全球生物多样性面临的威胁不断升级的情况下,DNA 条形码是评估和监测物种多样性的重要方法。我探索了 DNA 条形码作为一种强大而可靠的生物多样性评估工具的潜力。首先全面回顾现有文献,深入研究 DNA 条形码的理论基础、方法和应用。广泛研究了各种 DNA 区域(如 COI 基因)作为通用条形码的适用性。此外,在 DNA 条形码的背景下评估了不同 DNA 测序技术和生物信息学工具的优势和局限性。为了评估 DNA 条形码的有效性,对包括陆地、淡水和海洋栖息地在内的各种生态系统进行了采样。从收集的样本中提取的 DNA 经过目标条形码区域的扩增和测序。将获得的 DNA 序列与参考数据库进行比较,可以对采样的生物进行识别和分类。研究结果表明,即使在形态鉴定具有挑战性的情况下,DNA 条形码也能准确识别物种。此外,它还揭示了隐蔽和濒危物种,有助于保护工作。我还通过分析遗传数据来研究遗传多样性模式和不同分类群之间的进化关系。这项研究有助于加深对 DNA 条形码及其在生物多样性评估中的适用性的了解。这种方法的优势(例如速度、准确性和成本效益)以及有待改进的领域被强调。通过解开遗传密码,DNA 条形码增强了我们对生物多样性的了解,支持保护计划并为生态系统的可持续管理提供基于证据的决策。
这项研究研究了基于视频的智能手机应用程序(VBA)的有效性和可靠性,以测量杠铃卧推,后蹲和硬拉中的位移和速度。九个受过训练的受试者(三个女性;六个男性;年龄:24.2±4.2岁;身高175.8±8.1 cm;体重87.2±18.2kg)完成了两个用于杠铃板凳,后蹲,后蹲和隔光度的测试重度课程。卧推,后蹲和硬拉完成了八次重复,重量为40kg,并以快速和缓慢的速度完成。杆位移和平均速度。通过Pearson的产品矩相关系数(R),类内相关系数(ICC)和Bland-Altman图,对VBA的有效性和可靠性进行了分析。位移数据显示出中度至几乎完美的相关性(r = 0.43- 0.94),并且中度至优异的可靠性(ICC = 0.67-0.98)和Bland-Altman图显示了很小的偏见(<2cm)。平均速度数据显示出很大至几乎完美的相关性(r = 0.67-0.95),并且良好至优异的可靠性(ICC = 0.79-0.94),而Bland-Altman揭示了很小的偏见(<0.06 m/s)。与MC的黄金标准测量相比,这项研究中检查的VBA既有效又可靠。这些结果提供了证据表明,在快速和较慢的运动速度下,VBA可以用于卧推,后蹲和硬拉的位移和平均速度的跟踪。