总体存活率,并将中位存活率从22.03个月(低表达)缩短到18.93个月(高表达)(图。1a)。然后,我们比较了来自12名PDAC患者及其各自原发性肿瘤切片的复发性肿瘤切片中的CrabP-II水平。总体而言,复发性肿瘤通过免疫组织化学表现出较差的分化和更高的CrabP-II表达(图1B&1C)。 此外,在原发性肿瘤中,我们发现在分化较差的肿瘤细胞中的CrabP-II表达高于分化良好的细胞(图 1B,黑色和蓝色箭头在#1中,顶部面板)。 由于不良的分化与结果不良和化学抗性增加有关[12],因此这些观察结果表明,升高的CrabP-II表达可能有助于PDAC药物抗药性和复发风险增加。1B&1C)。此外,在原发性肿瘤中,我们发现在分化较差的肿瘤细胞中的CrabP-II表达高于分化良好的细胞(图1B,黑色和蓝色箭头在#1中,顶部面板)。由于不良的分化与结果不良和化学抗性增加有关[12],因此这些观察结果表明,升高的CrabP-II表达可能有助于PDAC药物抗药性和复发风险增加。
生物药物在治愈许多改变生活的疾病方面表现出了巨大的希望,甚至有些曾经被认为无法治愈的疾病。但是,由于生物材料的敏感性,它需要专门的开发和制造过程。通过冻干化稳定对保留产品的生物活性,结构完整性和同质品质具有吸引力,所有这些都对产品的成功至关重要。本白皮书描述了与生物药物产品的冻干相关的挑战。使用设计质量(QBD)方法与SP Sige™(LOS)套件的技术套件提供了提供数据丰富的环境的技术,可以克服许多这些挑战。特别是,可以通过使用LOS投资组合中的可扩展技术来简化冻干化从早期开发到完全商业化的扩展。从事生物制剂的公司需要使用良好的数据来提供成功的过程才能提供成功的产品。
临床上,多药耐药(MDR)从根本上影响着肿瘤治疗的预后,这主要是由于膜上通道介导的药物效应增强,从而减少了药物在肿瘤细胞中的积累。如何恢复肿瘤细胞对化疗的敏感性是一个持续而紧迫的临床问题。一种普遍的观点是,肿瘤细胞由于缺氧而转向糖酵解来提供能量。然而,研究表明,线粒体也起着至关重要的作用,例如通过三羧酸(TCA)循环为生物合成提供中间体,并通过氧化磷酸化(OXPHOS)完全分解有机物为细胞提供大量的ATP。在一些肿瘤中发现了高OXPHOS,特别是在癌症干细胞(CSC)中,它们的线粒体质量增加,可能依赖OXPHOS来提供能量。因此,它们对线粒体代谢抑制剂很敏感。鉴于此,我们在开发药物以克服 MDR 时应考虑线粒体代谢,其中线粒体 RNA 聚合酶 (POLRMT) 将成为重点,因为它负责线粒体基因表达。抑制 POLRMT 可以从源头上破坏线粒体代谢,造成能量危机并最终消灭肿瘤细胞。此外,它可能会恢复 MDR 细胞对糖酵解的能量供应,并使其重新对常规化疗敏感。此外,我们讨论了通过靶向 POLRMT 为 MDR 癌症设计新治疗分子的原理和策略。
图 1:传统生物标志物分析与患者特异性信号特征分析。遗传/蛋白质生物标志物分析依赖于对常见癌症类型相关基因或蛋白质表达水平的评估(左)。药物组合的设计是根据对周围信号网络状态的推断,基于先前的知识(左)。相比之下,患者特异性信号特征 (PaSSS) 分析涉及数百种癌症相关蛋白质的蛋白质组学分析,并无偏倚地识别每个样本中改变的信号特征,即不依赖于先前对信号通路的了解。这使得能够合理设计基于患者特异性独特重新连接信号网络的个性化靶向药物组合(右)。
摘要:多形性胶质母细胞瘤 (GBM) 是一种严重的脑肿瘤,其变异和适应治疗的能力是患者极低存活率的基础。尽管人们努力开发替代治疗方法,但进展令人失望,GBM 仍然是一种难以治疗的肿瘤。其强烈抵抗的主要原因之一是 DNA 修复机制的先天上调。由于标准疗法包括电离辐射和烷化剂的联合使用,这两种药物都会损伤 DNA,因此针对 DNA 损伤反应 (DDR) 被证明是一种使肿瘤细胞对治疗敏感的有益策略。在这篇综述中,我们将讨论 DDR 激酶抑制剂可用性的最新进展将如何成为未来治疗发展的关键。此外,我们将研究现有的主要 DDR 抑制剂,特别关注目前用于 GBM 临床试验的抑制剂。
波多黎各面临的最大经济挑战包括长期的高贫困率(尤其是儿童贫困率)和低劳动参与率。然而,波多黎各居民无法获得与美国本土面临此类挑战的人们相同的援助。与美国本土的联邦补充营养援助计划 (SNAP)、医疗补助计划和补充保障收入计划相对应的波多黎各计划的联邦资金上限不足,导致支持远低于美国本土提供的水平。尽管波多黎各已经采用了自己的劳动所得税抵免 (EITC),但该抵免额仅为联邦 EITC(波多黎各居民无法享受)的一小部分,而儿童税收抵免在波多黎各仅适用于有三个或三个以上孩子的家庭。