要实现拜登政府制定的雄心勃勃的脱碳目标,即到 2035 年实现 100% 清洁电力,到 2050 年实现净零排放经济,就需要大幅增加清洁和可再生能源在发电结构中的份额。为了以经济高效的方式实现这些脱碳目标,可再生能源需要增长到当前水平的几倍。输电系统无法处理预期的电力流量大幅增加;其容量和可用性不足导致电网拥堵,从而导致能源价格上涨并限制可再生能源。此外,随着预期的经济电气化导致未来需求大幅增加,电网的负担不断增加。REPEAT 项目的一份报告估计,要充分利用《通货膨胀削减法案》(IRA)提供的补贴,输电容量必须每年增长约 2.3%,是过去 10 年增长率的两倍多(Jenkins 等人,2022 年)。
注:各州 RPS 要求电力供应商(电力配送公司和竞争性供应商)使用可再生能源满足其零售负荷的最低百分比,从而促进可再生能源资源的发展。康涅狄格州的 I 类 RPS 要求在 2030 年稳定在 40%。缅因州的 I/IA 类 RPS 要求在 2030 年增加到 50%,此后每年都保持在该水平。马萨诸塞州的 I 类 RPS 要求在 2020 年至 2024 年期间每年增加 2%,在 2025 年至 2029 年期间每年增加 3%,此后每年恢复到 1%,没有规定的到期日。新罕布什尔州的百分比包括 I 类和 II 类资源的要求(II 类资源是 2006 年 1 月 1 日后开始运营的新太阳能技术)。新罕布什尔州的 I 类和 II 类 RPS 要求将在 2025 年稳定在 15.7%。罗德岛州对“新”可再生能源的要求将在 2033 年达到 100%。佛蒙特州的“总可再生能源”要求将在 2032 年稳定在 75%;它承认所有形式的新可再生能源和现有可再生能源,并且独特地将大型水电归类为可再生能源。
注:州 RPS 要求通过要求电力供应商(电力配送公司和竞争性供应商)使用可再生能源满足其零售负荷的最低百分比来促进可再生能源资源的发展。康涅狄格州的 I 类 RPS 要求在 2030 年稳定在 40%。缅因州的 I/IA 类 RPS 要求在 2030 年增加到 50%,此后每年都保持在该水平。马萨诸塞州的 I 类 RPS 要求在 2020 年至 2024 年期间每年增加 2%,在 2025 年至 2029 年期间每年增加 3%,此后每年恢复到 1%,没有规定的到期日期。新罕布什尔州的百分比包括 I 类和 II 类资源的要求(II 类资源是 2006 年 1 月 1 日后开始运营的新太阳能技术)。新罕布什尔州的 I 类和 II 类 RPS 要求将在 2025 年稳定在 15.7%。罗德岛州对“新”可再生能源的要求将在 2033 年达到 100%。佛蒙特州的“总可再生能源”要求将在 2032 年稳定在 75%;它承认所有形式的新可再生能源和现有可再生能源,并且独特地将大型水电归类为可再生能源。
团队:Nate Blair、Paul Denholm、Stuart Cohen、Wesley Cole、Chad Augustine、Wesley Cole、Will Frazier、Madeline Geocaris、Jennie Jorgenson、Kevin McCabe、Kara Podkaminer、Ashreeta Prasanna
加拿大自然资源部 (NRCan) 能源研究与开发办公室 (OERD) 致力于在我们的项目和内部运营中推进 IDEA 和协调工作。OERD 认识到我们在项目中与之合作的许多组织将处于不同的实施阶段。诸如“促进未来电力行业劳动力包容性、多样性、公平性和可及性”活动等活动促进了我们项目资助的项目之间的对话、学习和分享经验教训。
摘要:商业航空的发展受到提高效率从而降低排放的需求的推动。全电动飞机提供了一种消除直接燃料燃烧排放的途径,但其发展受到当前电池能量和功率密度的限制。多功能结构动力复合材料结合了承重和储能功能,为高能量密度电池提供了替代方案,并有可能使电动飞机更轻更安全。本研究调查了将结构动力复合材料集成到未来电动飞机中的可行性,并评估了其对排放的影响。使用空客 A320 作为平台,概念性地设计了三种不同的电动飞机配置,包括结构动力复合材料、细长机翼和分布式推进。通过确定飞机任务性能要求和重量来估算结构动力复合材料所需的特定能量和功率。与传统 A320 相比,结构功率复合材料 >200 Wh/kg 的并联混合动力 A320 可在 1500 公里的任务中将燃油效率提高 15%。对于全电动 A320,结构功率复合材料 >400 Wh/kg 可将为 1000 公里飞行提供动力所需的电池比能或质量减半。
摘要:商业航空的发展受到提高效率从而降低排放的需求的推动。全电动飞机提供了一种消除直接燃料燃烧排放的途径,但其发展受到当前电池能量和功率密度的限制。多功能结构动力复合材料结合了承重和储能功能,为高能量密度电池提供了一种替代方案,并有可能使电动飞机更轻、更安全。本研究调查了将结构动力复合材料集成到未来电动飞机中的可行性,并评估了其对排放的影响。以空客 A320 为平台,概念性地设计了三种不同的电动飞机配置,包括结构动力复合材料、细长机翼和分布式推进。通过确定飞机任务性能要求和重量来估算结构动力复合材料所需的特定能量和功率。与传统 A320 相比,并联混合动力 A320 的结构功率复合材料 >200 Wh/kg 可将 1500 公里飞行任务的燃油效率提高 15%。对于全电动 A320,结构功率复合材料 >400 Wh/kg 可将 1000 公里飞行所需的电池比能或质量减半。
免责声明:此处表达的观点是作者的观点,不反映美国空军学院,空军部或国防部的立场。作者注意:作者感谢Jordan Caldwell和整个Ghost Robotics团队以及Lonewolf Logistics的Wyatt Woolsey,为这个Capstone项目提供了极大的支持。摘要:本文介绍了基于模型的系统工程(MBSE)来建模Ghost Robotics Vision 60 60四足动物无人接地车(Q-ugv),并指导军事工程师和领导者的未来决策。系统的CATIA魔术系统用于与系统内部和外部交互作用,包括从这些过程和交互中汲取的功率。通过将此模型连接到基于MATLAB的程序,创建了Vision 60的整体模型,可以在设计阶段的早期进行修改,改进和更好地理解。我们工作的一种应用是帮助预测和分析从各种附件和内部流程中汲取的权力,以预测军事环境中的未来绩效。这项研究的结果提供了对未来电力系统设计的见解,尤其是在添加了机器人的附件,并证明了MBSE建模在军事环境中复杂系统的潜力。最后,本文验证了国防部(DOD)内MBSE的潜在实施,以在当前数字化转型中保持优于对手的优势地位。关键字:机器人技术,基于模型的系统工程,幽灵,Q-ugv,技术1。简介机器人在国防和工业中的使用变得无处不在。在使用的各种机器人中,四足动物无人接地车辆(Q-ugv)由于其多功能性和以安全有效的方式扩展人类能力的潜力而获得了知名度。例如,陆军已将Q-ugv用于清理建筑物和确定潜在威胁等任务。陆军机动卓越中心部署了Flir Packbot EOD机器人和通用动力任务系统(GDMS)进行侦察和炸弹处理(Grizzle,2018年)。执法机构还使用Q-UGV来寻找失踪人员或嫌疑人(Holt,2020)。这些机器人在灾难反应方案中也有潜力,可以使用它们来定位幸存者并评估损害(Kusaka,Miyawaki和Nakamura,2020年)。Q-ugv的其他应用包括指导视觉障碍的人(育儿,2023年),监视(Hougen等,2000)和伴侣(Banks等,2008; de Visser等,2022)。本文重点介绍了Ghost Robotics Vision 60 Q-UGV(图1)。Vision 60是中型的高耐用,敏捷且耐用的全天候无人机无人机,旨在在各种非结构化的城市和自然环境中用于防御,国土和企业应用。可以携带各种有效载荷,包括电光传感器,机器人臂以及致命和非致命武器。Vision 60由1,250 WH锂离子电池提供动力,宣传范围为10公里,尽管真实范围和运营时间高度依赖于任务配置文件(例如有效负载重量,配件的功率要求,移动速度)和环境因素。作为组织,包括特种作战部队,执法和公共安全,开始使用这些机器人,必须了解任务概况和环境影响范围和操作时间,因为这可能会影响机器人所需的机器人数量,也可以影响机器人对特定任务的实用性。
摘要:电力系统不可避免地要向可持续和以可再生能源为中心的电力系统转变,这一转变伴随着巨大的多样性和重大挑战。需要相应改变运行策略,采用更多的智能化和数字化,例如信息物理系统 (CPS),以实现所有系统层面(组件、单元、工厂、电网)的最佳、可靠和安全运行,并利用大数据。数字孪生 (DT) 是实现 CPS 的一种有前途的方法。本文全面回顾了它们在电力系统中的应用。回顾表明,现有的 DT 定义与未来电力系统对 DT 的要求之间存在差距。因此,通过使当前定义适应这些要求,引入了“数字孪生系统 (DTS)”的通用定义,最终提出一个多层次、可任意扩展的“数字孪生系统 (SDTS)”的想法。 SDTS 可通过开源框架实现,该框架可充当不同 DTS 之间的中央数据和通信接口,这些 DTS 可通过“报告模块”进行交互,并由“控制模块”(CM) 进行监管。本文讨论了涉及多个系统级别的示例应用场景,以说明所提出的 SDTS 概念的功能。
