摘要互连的多微晶(MMG)的概念是一种有前途的解决方案,用于改善分销网络的操作,控制和经济性能。MMGS的能源管理是一项艰巨而又具有挑战性的任务,尤其是由于这些资源间歇性以及负载需求的随机性质而导致的可再生能源资源(RER)和负载变化的变化。在这方面,通过最佳包含由光伏(PV)和风力涡轮机(WT)的分布式发电(DGS)组成的混合系统,优化了MMGS的能源管理,并在产生的功率和负载变化的情况下进行了基于风力涡轮机(WT)的分布式生成(DGS)。提出了一种修改的卷cuchin搜索算法(MCAPSA),并应用于MMG的能量管理。MCAPSA基于增强标准胶囊搜索算法(CAPSA)的搜索能力,使用三种改进策略,包括基于准序列的学习(QOBL),基于运动的随机征费,征收征费分布以及Prairie Dog dog Optimization(PDO)中的Prairie Dogs的利用机制。优化的功能是一个多目标函数,包括成本和降低电压偏差以及稳定性增强。对标准基准函数和获得的结果验证了所提出的技术的有效性。然后,所提出的方法用于在不确定性锥形时进行IEEE 33-BUS和69个总线MMG的能源管理。同样,对于第二个MMG,VD的成本和总和减少了44.19%和39.70%,而VSI的增强率则增长了4.49%。结果表明,使用拟议技术包含WT和PV的能源管理可以将VD的成本和总和减少46.41%和62.54%,并且第一个MMG的VSI将增强15.1406%。
在设计ECG系统时,主要问题之一是功耗,尤其是用于移动和可穿戴设备。本文提出了DTLC适用于使用具有负面偏置的双尾比较器的低端和高端应用程序,以改善使用Mentor图形建模的ECG信号监测系统。使用180nm CMOS技术的EDA工具集成的电路设计,以0.8V的电源提高了电力消耗,而不会下降汽车的性能。参数(包括功耗和功耗产品(PDP))以20 kHz的时钟频率从1.33μW降低到12.5 PW,而PDP降低到27°C时的0.251 AJ,可以改善功耗(PDP)。这些优化使所提出的比较器非常适合低功率,高性能ECG系统,尤其是在便携式和可穿戴的医疗设备中,在这些设备中,作为资源利用和交付的精度是重要因素。设计为公司的数字过渡提供了一个声音平台。心脏信号监测中的类似物到数字转换器(ADC)作为客户对医疗行业中节能声音元素的需求的增长。通过这种方式,功率释放效率得到提高,并且过多的能耗受到限制。根据准确性要求,拟议的比较器可以视为最适合现代心电图应用程序的比较。
美国陆军工程兵团正在修订松溪湖总体规划。总体规划修订将指导未来 25 年内构成其洪水储存区的联邦所有财产的土地和娱乐管理。管理活动包括保护自然和文化资源、提供公共土地和水上娱乐、保护公众以及确保水库和水坝的运行。相关信息和当前土地使用地图的副本可在下面的美国陆军工程兵团网站上找到。
1994 年 1 月 19 日至 22 日在里士满 (BC) 举行的白松象鼻虫研讨会的目标是整合有关这种害虫的现有科学知识,并通过组建国家研发网络制定未来研究和资金需求战略。研讨会由太平洋林业中心和 BC 林业部组织,获得了森林资源开发协议 FRDA 11 以及加拿大森林服务局 (CFS) 总部科学与可持续发展局通过 IFPM 工作组提供的资金支持。
飞行员应考虑到风向,并考虑风将如何影响执行飞行机动所需的功率。发动机提供的功率或旋转扭矩通过旋翼系统和传动系统传输,需要尾桨来抵消扭矩效应。在飞机运行的所有机动过程中,都必须充分抵消主旋翼扭矩。如果风向不利,且施加了过多扭矩而没有采用反扭矩,飞行员可能会遇到一种称为 LTE 的状况。LTE 是一种环境条件,其中风是导致失去方向控制的主要因素,这是由于直升机意外的旋转扭矩运动造成的,而飞行员没有预料到或没有(及时)应用适当的控制输入来控制飞机。
执行摘要 黑尾鹿(Odocoileus hemionus)是蒙大拿州的重要物种,蒙大拿州鱼类、野生动物和公园管理局 (MFWP) 在基于科学的鹿管理方面有着悠久的历史。近年来,由于全州许多地区都记录到了黑尾鹿数量不同程度的下降和猎人的猎杀,黑尾鹿种群动态和生态尤其令人担忧。野生动物管理人员的任务是维持或恢复鹿种群,抑制未来潜在的下降幅度,以及稳定种群和随后的猎人机会。因此,增进对黑尾鹿生态学和种群动态的定量了解对整个蒙大拿州都具有重要意义。我们在蒙大拿州西北部的三个研究区域进行了实地研究,这些区域对黑尾鹿生态学的研究较少。实地研究包括评估季节性空间使用和迁徙、种群动态和生命率、夏季饲料营养(特别关注森林干扰)、夏季和冬季栖息地选择以及狩猎季节的秋季迁徙模式。我们还对蒙大拿州东部收集的黑尾鹿监测数据进行了综合种群建模技术的新应用,这为监测和管理提供了一些潜在有用的进步。空间利用和迁徙(第 3 部分):我们在 3 个研究区域捕获了 134 只成年雌性黑尾鹿并戴上项圈,其中卡内伯特-萨利什山脉 41 只、落基山脉前线 49 只和白鱼山脉 44 只。夏季家域的面积通常比冬季大,不过所有研究区域和季节的平均家域面积≤10 平方公里。三个研究区域的鹿都表现出部分迁徙行为,大多数(80-90%)鹿迁徙到不同的夏季家域。研究区域的平均迁徙距离为 23-33 公里,范围从 3-59 公里。不同个体的迁徙时间差异很大,动物在 5 月 7 日至 20 日开始春季迁徙,具体日期取决于研究区域,而所有研究区域秋季迁徙开始的平均日期为 10 月 19 日。多年来,鹿对冬季和夏季的活动范围都非常忠诚,93% 至 100% 的鹿在连续几年返回相同的活动范围,具体日期取决于季节和研究区域。营养状况和生命率(第 4 节):我们以体脂百分比的形式测量营养状况,该百分比是根据超声波臀部脂肪测量和身体状况评分估算的。不同个体鹿的营养状况差异很大,随着冬季的推移,体脂会随着时间的推移而显着下降。在控制捕获日期的影响后,研究区域或捕获的生物学年份之间的体脂没有显着差异。事实上,未校正的体脂百分比中值在研究区域之间是相同的(图 4.2),为 6.9%,这略低于其他地区在冬末观察到的平均值(加州和科罗拉多州的研究中约为 7.2%)。成年雌性年平均存活率为 0.77,各个研究区域的情况相似,每个研究区域的平均估计值分别为 0.79(0.70–0.90;Cabinet-Salish)、0.77(0.68–0.87;Rocky Mountain Front)和 0.75(0.66– 0.86;Whitefish Range)。所有 3 个研究区域在生物年末的早春月份 4 月和 5 月都显示出最高的死亡率。在所有研究区域中,美洲狮捕食是已知的主要死亡原因,造成各地区成年雌性每年 6-11% 的死亡率。我们没有观察到因狩猎而导致的死亡,这在三个研究区域中的两个区域中是预料之中的,因为在研究期间禁止采集无角鹿角。因此,观察到的 21-25% 的年死亡率主要可归因于“自然死亡率”,与之前在蒙大拿州东部研究中观察到的死亡率(5-7%)相比,这一比率很高。2018 年冬季之后,在怀特菲什山脉观察到的春季死亡率脉动包括持续的不良状况和低骨髓脂肪。
本研究探讨了在降雨模型中使用分数泊松和分数伽马模型的好处,突出了它们在处理零膨胀数据,减少过度分散并提供更大的灵活性和准确性和准确性方面的优势。这项研究的第二部分研究了海洋生态系统与全球气候变化之间的动态相互作用。它专注于浮游植物在氧气产生中的作用以及变暖水对这种微妙平衡的影响。通过采用整合微分方程和布朗运动的数学模型,该研究提供了一个全面的框架,以了解不同的氧气产量如何影响海洋生态系统的可持续性。最后,该研究将小部分的布朗运动纳入建模浮游生物 - 氧气动力学,以解决传统布朗运动的局限性。此方法捕获远程
飞机尾迹是飞机在温度约为 −40°C 及以下时在对流层上部排放的产物,是人类对地球气候最明显的影响之一。最初,飞机尾迹的微物理特性与自然卷云不同,但随着时间的推移,飞机尾迹会失去形状并扩散,变得与自然卷云几乎无法区分,不仅在视觉上,而且在微物理特性上也是如此。飞机尾迹是消失还是发展成飞机尾卷云取决于环境相对湿度相对于冰。飞机尾迹将在充满冰的大气中持续存在。在过饱和状态下,冰晶会形成并提取过量的环境水蒸气。但是,线状飞机尾迹向卷云的转变尚不十分清楚,气候模型也没有很好地描述它。凝结尾迹的形成可以用施密特-阿普尔曼准则 (SAC) 1 来描述,这是一个简单的方程,它与大气温度和气压、燃料能量含量、排出的水蒸气量以及飞机的整体推进效率有关。SAC 预测可见凝结尾迹形成条件的可靠性已得到证实。
开发了一种由轨道飞行器牵引的长尾天线动力学模型,然后研究了几种控制导线稳态形状和风梯度引起的振荡的候选方案。使用具有自由/固定的经典振动链开发了计算机模拟
脑脑脑组成了哺乳动物大脑中的主要区域,其中包括多个重要组成部分,包括大脑皮层,边缘系统,基底神经节和嗅觉系统[1,2]。具有多个不同部分的尾脑的发展需要各种信号通路的相互作用,这些信号通路从胚胎到成人阶段都受到严格调节。此外,由于基因突变或外部因素而出现了与端脑开发有关的各种疾病[3]。尽管在过去几十年中取得了重大进展,但在揭示了大脑发育和病理生理学的机制,但大脑的复杂结构和功能带来了重大挑战。最近,已经开发出称为脑官的模型来模仿发展中的人脑[4]。