抽象的碳化硅陶瓷由于其高抗压强度,高硬度和低密度而被广泛用于装甲保护。在本研究中,开发了一种基于板块影响技术的实验技术来测量陶瓷材料的拉伸强度。由于陶瓷的强度不通过动态载荷对应变速率高度敏感,因此使e效率保持在失败位置保持恒定的应变速率。数值模拟被用于设计几种波动加工的板层的几何形状,该板在冲击时会产生脉冲形的压缩波,平滑的上升和下降时间范围为0.65至1 µs。这种减震板损坏的实验是在设定在200至450 m/s之间的撞击速度的SIC陶瓷上进行的。多亏了激光干涉法分析,目标后面速度可在给定的应变率载荷下测量均方根骨架强度。使用脉冲载荷和实验确定的脉冲强度,通过弹性塑料数值模拟评估了故障区中的应变速率。在适当的板板设计时,发现板撞击技术可以正确控制良好的应变速率载荷,左右在10 4 -10 5 s-1左右,可以达到相对较长的上升时间。这项工作有望提供合适的工具来研究陶瓷材料的高应变率行为。
阿尔及利亚 Echahid Cheikh Larbi Tebessi 大学 (1)、阿尔及利亚 Mostefa Ben Boulaid-Batna 第二大学 (2)、法国艾克斯马赛大学 (3) doi:10.15199/48.2024.04.31 使用拉曼光谱和遗传算法优化退火后的 SiGe DPSi 异质结构,以增强材料特性和性能 摘要:在我们之前的调查中,我们通过拉曼光谱深入研究了双多孔硅 (DPSi) 上 SiGe 合金的复杂性,揭示了拉曼峰移、应力和多孔材料中 SiGe 合金中 Ge 浓度之间以前未知的联系。这项研究的突出特点在于其独特的方法——使用遗传算法比较结果。该方法对数据进行了全面的分析,增强了我们对其中复杂关系的理解。通过频率法验证,我们的结果为 DPSi 上的外延生长提供了宝贵的见解,为拉曼光谱、应力和合金成分之间错综复杂的相互作用提供了细致入微的视角。这些发现不仅有助于加深对 SiGe 合金的理解,还为 DPSi Streszczenie 等创新基板上的外延生长领域的进一步发展铺平了道路。 W naszym poprzednim badaniu zagłębiliśmy się w zawiłości stopów SiGe na podwójnie porowatym krzemie (DPSi) za pomocą spektroskopii Ramana, odkrywając nieznane wcześniej powiązania między拉玛纳 (Ramana) 和拉玛纳 (Ramana) 的产品均采用了 SiGe 和材料。 Cechą tego badania 开玩笑 odrębność podejścia — porównanie wyników z wykorzystaniem algorytmugenetycznego。方法是通过分析仪器来分析、分析和分析。 Nasze wyniki、potwierdzone methodą częstotliwości、dostarczają cennych informacji na temat wzrostu epitaksjalnego na DPSi、prezentując zniuansowaną perspektywę na skomplikowane wzajemne oddziaływanie między spektroskopią Ramana, naprężeniem i składem stopu。 Odkrycia te nie tylko przyczyniają się do lepszego zrozumienia stopów SiGe, ale także torują drogę do dalszych postępów w dziedzinie wzrostu epitaksjalnego na innowacyjnych podłożach, takich jak DPSi ( Optymalizacja 异质结构 DPSi wyżarzonych SiGe przy użyciu spektroskopii Ramana 和 algorytmu Genetycznego w celu uzyskania lepszej charakterystyki i wydajności materiałów ) 关键词:双多孔硅、拉曼光谱、遗传算法。关键词:多孔硅、光谱仪、算法。1. 简介 最近的技术进步凸显了减小器件尺寸和提高性能的重要性。因此,越来越需要控制结构中的应力并了解其来源。一种新兴且有前景的策略是采用柔性衬底,其中多孔硅 (PSi) 因其公认的灵活性而脱颖而出 [1, 5]。PSi 的柔韧性和柔韧性使其能够熟练地吸收 SiGe 异质外延膜引起的应力变化,这主要归功于其较高的孔密度。它与硅基微电子学的完美契合和高成本效益为将各种超轴系统(如 III-V 或 SiGe)整合到硅衬底上开辟了新的机会 [6, 7]。最近,双多孔硅 (DPSi) 已成为柔性衬底竞争中的突出候选者,特别是用于在 Si 上的异质系统(如 III-V 和 SiGe)的外延生长 [8]。双多孔硅 (DPSi) 结构由具有密封孔的超薄、原子级平坦上层和厚的、高度多孔的下层组成。然而,在该 DPSi 层上实现 SiGe 和 Ge 的低温外延的努力导致了不均匀外延层的形成,其特征是存在扩展缺陷。[9, 10]。然而,对 DPSi 层进行热处理会引起显著的形态变化,将小孔转变为大孔,同时产生拉伸应变,正如我们之前的研究 [1] 所记录的那样。这种伪衬底具有两个显着的特性:它具有高度的柔韧性和可承受拉伸应变,这为使用退火 DPSi 在 Si 上有效集成异质系统开辟了可能性。本研究深入探索退火 DPSi 作为应力模板层,通过分子束外延沉积高质量单晶 SiGe 层它具有高度的柔韧性,能够承受拉伸应变,这为使用退火 DPSi 在 Si 上有效集成异质系统提供了可能性。本研究深入探索了退火 DPSi 作为应力源模板层,通过分子束外延沉积高质量单晶 SiGe 层它具有高度的柔韧性,能够承受拉伸应变,这为使用退火 DPSi 在 Si 上有效集成异质系统提供了可能性。本研究深入探索了退火 DPSi 作为应力源模板层,通过分子束外延沉积高质量单晶 SiGe 层
摘要:通过比较完全耦合的大气 - 海洋 - 冰模型与同一大气模型与海洋替换为无动感的平板层(因此Fornless Slab Slab Ocean模型),研究了交互式海洋动力学对大西洋海面温度(SST)内部变化的影响。两种模型之间的SST变异性差异是通过优化技术诊断出的,该优化技术发现了差异尽可能不同的组件。这项技术表明,大西洋SST的可变性在两个模型之间显着不同。平板海洋模型中具有最大SST方差的两个组件类似于与北大西洋振荡(NAO)和大西洋多年代变化(AMV)模式相关的Tripole SST模式。该结果支持以前的主张,即AMV不需要海洋动力学,尽管海洋动力学导致AMV和NAO Tripole的记忆略有增加。完全耦合模型中SST方差最极端增强的组件类似于大西洋尼诺尼诺模式,并确定了我们技术隔离已知需要海洋动力学的物理模式的能力。在完全耦合模型中具有更大差异的第二个组件是一种亚置SST变异性的模式。SST异常的重新出现和海洋热传输的变化都会导致SST差异和记忆力增加。尽管SST的平均值和变异性差异很大,但两种模型之间的大气变异性非常相似,并确定大气变异性是由内部大气动力学产生的。
通过功率循环测试对使用改进的互连技术的最新标准双功率模块进行老化调查 Yi Zhang a,* 、Rui Wu b 、F. Iannuzzo a 、Huai Wang aa AAU Energy,奥尔堡大学,丹麦奥尔堡 b Vestas Wind Systems A/S,丹麦奥胡斯 摘要 为硅和碳化硅设备开发了最新标准“新型双”功率模块,以满足高可靠性和高温电力电子应用日益增长的需求。由于新封装刚刚开始投放市场,其可靠性性能尚未得到充分研究。本文研究了基于新封装的 1.7 kV/1.8 kA IGBT 功率模块的功率循环能力。对功率循环前后的电气和热性能都进行了研究。在 Δ T j = 100 K 和 T jmax = 150 ° C 的条件下经过 120 万次循环后,芯片和键合线均没有明显的性能下降。尽管如此,在测试环境中,在约 600 k 次循环后,已达到导通电压 (V ce ) 增加的寿命终止标准。进一步的扫描声学显微镜测试发现,疲劳位置从传统的近芯片互连(例如,键合线剥离)转移到直接键合铜 (DBC) 基板和底板层。考虑到新封装的循环寿命是传统功率模块的十倍以上,预计随着互连技术的进一步改进,热机械疲劳将不再是限制寿命的机制。同时,随着先前的瓶颈(例如,键合线)得到解决,一些新的疲劳机制(例如,DBC 的分层)在新封装中变得明显。
由细菌引起的摘要细菌代表了对全球健康的持续和重大挑战。这些微生物具有引起人类各种疾病的能力,从轻度感染水平到致命状况。因此,对这些微生物的鉴定对于有效治疗极为重要。生化测试方法是一种基于其代谢和生化特征鉴定细菌的传统方法。可以通过变化的颜色,浊度和pH来分析反应。然而,研究旨在使用乳糖,葡萄糖,果糖,蔗糖和麦芽糖证据来验证微肽中的生化证据。通过对糖中接种细菌的发酵产生的颜色转向黄色的分析观察到了测试管中的预期结果,但是微酸盐中测试的结果并未达到预期的颜色变成细菌的代谢,从而结束了这种方法的无效。关键词:细菌,生化证据,微酸盐。由细菌引起的摘要感染,代表了对全球健康的持续和重大挑战。这些微生物具有引起人类各种疾病的能力,范围从轻度感染水平到致命状况。因此,这些微生物的鉴定对于有效治疗至关重要。生化测试方法是基于其代谢和生化特征的传统细菌鉴定方法。可以通过颜色,浊度和pH的变化来分析反应。然而,该研究旨在使用乳糖,葡萄糖,果糖,蔗糖和麦芽糖作为基础验证微板中的生化测试。通过在糖中接种细菌的发酵导致的颜色变化,在测试管中观察到了预期的结果,但测试结果并未实现细菌代谢的预期颜色变化,从而导致该方法的无效结束。关键字:Bactéria,生化测试,微板层。
通过功率循环测试对使用改进的互连技术的最新标准双功率模块进行老化调查 Yi Zhang a,* 、Rui Wu b 、F. Iannuzzo a 、Huai Wang aa AAU Energy,奥尔堡大学,丹麦奥尔堡 b Vestas Wind Systems A/S,丹麦奥胡斯 摘要 为硅和碳化硅设备开发了最新标准“新型双”功率模块,以满足高可靠性和高温电力电子应用日益增长的需求。由于新封装刚刚开始投放市场,其可靠性性能尚未得到充分研究。本文研究了基于新封装的 1.7 kV/1.8 kA IGBT 功率模块的功率循环能力。对功率循环前后的电气和热性能都进行了研究。在 Δ T j = 100 K 和 T jmax = 150 ° C 的条件下经过 120 万次循环后,芯片和键合线均没有明显的性能下降。尽管如此,在测试环境中,在约 600 k 次循环后,已达到导通电压 (V ce ) 增加的寿命终止标准。进一步的扫描声学显微镜测试发现,疲劳位置从传统的近芯片互连(例如,键合线剥离)转移到直接键合铜 (DBC) 基板和底板层。考虑到新封装的循环寿命是传统功率模块的十倍以上,预计随着互连技术的进一步改进,热机械疲劳将不再是限制寿命的机制。同时,随着先前的瓶颈(例如,键合线)得到解决,一些新的疲劳机制(例如,DBC 的分层)在新封装中变得明显。
棘阿米巴角膜炎 一种罕见但严重的视力破坏性角膜炎症,由污染水中的寄生虫引起。 调节 通过改变眼睛晶状体的形状来改变眼睛的聚焦能力,使近处物体的光线聚焦到视网膜上,从而在远处获得清晰的视野。 感觉计 测量角膜或眼睑边缘敏感度的仪器。 对准配戴 选择 *BOZR 使其与角膜表面平行的配戴技术。 缺氧 缺乏氧气。 角膜尖 角膜的顶端,通常位于瞳孔和视轴正上方。 无晶状体 白内障摘除后,眼睛的天然晶状体的缺失或丢失。 顶端间隙 隐形眼镜后表面与角膜顶端之间的距离。 顶端触痛 一种隐形眼镜配戴,通常是平的,镜片的后表面位于角膜顶端。非球面镜片 适用于边缘性散光患者和老花眼患者。 散光角膜切开术 一种通过将角膜从椭圆形重塑为更球形来矫正散光的外科手术。最适合散光轻度或中度的患者。 弱视 尽管已通过最佳的眼镜或隐形眼镜矫正,但单眼或双眼视力下降,且眼部结构无病变。是指大脑中与特定眼睛相对应的部分智力发育不良。 像差控制镜片 通过控制球面像差来改善视觉功能的隐形眼镜。 散光 一种屈光状况,角膜、晶状体或二者都是椭圆形而不是球形,并且光在所有子午线的折射并不相同。 高压灭菌器 一种使用压力蒸汽对隐形眼镜进行灭菌的腔室。自动板层角膜切除术一种针对极度近视患者的新手术,其中仅将受影响的角膜的一小部分与来自供体角膜的切片一起移植。
处理:基于PTFE的材料比大多数其他刚性印刷布线板层较软,并且更容易受到处理损坏。仅带有铜箔的芯很容易折痕。 粘合到厚铝,黄铜或铜板上的材料更容易刮擦,凹坑和凹痕。 应遵循适当的处理程序。 1)处理面板时,戴上针织尼龙或其他非吸收材料的手套。 正常的皮肤油是略带酸性的,很容易腐蚀铜表面。 指纹很难去除,因为正常的亮光剂会溶解腐蚀,但是将腐蚀性油留在铜中,以使指纹在数小时后重新出现。 建议采用以下过程来去除指纹:a)稀释盐酸中明亮蘸酱。 b)在丙酮,甲基酮酮或氯化溶剂的蒸气中脱脂。 c)水冲洗并烘烤60分钟 @ 250°F(125°C)。 d)重复明亮的倾角。 2)保持工作表面清洁,干燥且完全没有碎屑。 3)通过剪切,锯,遮挡和打孔等初始过程将聚乙烯袋或片袋放在适当的位置。 4)仅通过两个边拾取面板。 薄骨头尤其缺乏通过一个边或角支撑自己所需的刚度,以这种方式处理它们可能会在尺寸上扭曲介电或赋予永久性折痕。 5)在加工过程中,应在工作站之间在平坦的托盘上运输核心,最好与柔软的无硫纸交织在一起。仅带有铜箔的芯很容易折痕。粘合到厚铝,黄铜或铜板上的材料更容易刮擦,凹坑和凹痕。应遵循适当的处理程序。1)处理面板时,戴上针织尼龙或其他非吸收材料的手套。正常的皮肤油是略带酸性的,很容易腐蚀铜表面。指纹很难去除,因为正常的亮光剂会溶解腐蚀,但是将腐蚀性油留在铜中,以使指纹在数小时后重新出现。建议采用以下过程来去除指纹:a)稀释盐酸中明亮蘸酱。b)在丙酮,甲基酮酮或氯化溶剂的蒸气中脱脂。c)水冲洗并烘烤60分钟 @ 250°F(125°C)。d)重复明亮的倾角。2)保持工作表面清洁,干燥且完全没有碎屑。3)通过剪切,锯,遮挡和打孔等初始过程将聚乙烯袋或片袋放在适当的位置。4)仅通过两个边拾取面板。薄骨头尤其缺乏通过一个边或角支撑自己所需的刚度,以这种方式处理它们可能会在尺寸上扭曲介电或赋予永久性折痕。5)在加工过程中,应在工作站之间在平坦的托盘上运输核心,最好与柔软的无硫纸交织在一起。垂直架,除非垂直架子被插入并提供足够的垂直支撑。
• Sinchuk, Y.、Pannier, Y.、Antoranz-Gonzalez, R.、Gigliotti, M. (2019) 基于 μ-CT 的有限元模型分析含空隙的碳/环氧 3D 纺织复合材料中水分扩散引起的应力,复合结构,212:561-570。- https://doi.org/10.1016/j.compstruct.2018.12.041 • Gigliotti, M.、Pannier, Y.、Sinchuk, Y.、Antoranz-Gonzalez, R.、Lafarie-Frenot, M.C.、Lomov, S.V.(2018) X 射线微型计算机断层扫描表征无卷曲 3D 正交编织复合材料中热循环引起的裂纹,复合材料 A 部分:应用科学与制造,112:100-110。- https://doi.org/10.1016/j.compositesa.2018.05.020 • Foti, F.、Gigliotti, M.、Pannier, Y.、Mellier, D.、Lafarie-Frenot, M.C.(2018) 环境对交叉层 C/环氧层压复合材料高温疲劳的影响,复合结构,202:924-934。- https://doi.org/10.1016/j.compstruct.2018.04.065 • Sinchuk, Y., Pannier, Y., Gueguen, M., Gigliotti, M. (2017) 使用全局-局部方法对 2D 纺织复合材料中的水分膨胀进行基于图像的建模,Proc IMechE Part C:机械工程科学杂志 - 特别版:“交通工程中的轻量化设计” 客座编辑:Serge Abrate,美国南伊利诺伊大学,Vincenzo Crupi,意大利墨西拿大学,Gabriella Epasto,意大利墨西拿大学,232:1505–1519。- ISSN:0954-4062,doi:10.1177/0954406217736789 • Sinchuk, Y., Pannier, Y., Gueguen, M., Tandiang, D., Gigliotti, M. (2017) 基于计算机断层扫描的纺织复合材料水分扩散和膨胀建模与仿真,国际固体与结构杂志,154:88-96。- ISSN:0020-7683,doi:10.1016/j.ijsolstr.2017.05.045 • Gigliotti M、Pannier Y、Lafarie - Frenot MC、Grandidier JC。(2016) “飞机应用中有机基复合材料“多物理”疲劳的一些例子”。载于:《航空航天工程中的复合材料和结构》,Carrera E,编辑。Trans Tech Publications,瑞士普法菲孔;第五章,第 79-96 页。• Guigon C、Lafarie - Frenot MC、Pannier Y、Rakotoarisoa C. (2015) “环境对 3D 编织聚合物基复合材料中热循环引起的微裂纹的影响”。ICFC6,第六届复合材料疲劳国际会议。法国巴黎,第 10 页。 • Gigliotti M、Pannier Y、Foti F、Lafarie - Frenot MC、Mellier D、Luu TC。(2015) “飞机用层压和纺织有机复合材料的多物理疲劳”。ICFC6,第六届复合材料疲劳国际会议。法国巴黎,10 页。 • Foti F、Pannier Y、Gigliotti M、Lafarie - Frenot MC、Mellier D、Luu TC。(2015)“用于航空应用的层压和编织有机基质复合材料的多物理疲劳。JNC 19,第十九届全国复合材料日。里昂(法国)。• Guigon C、Lafarie - Frenot MC、Pannier Y、Olivier L、Rakotoarisoa C.(2014 年)“温度和热循环老化对 RTM 制造的聚合物基质 3D 编织复合材料性能的影响”。ECCM16,第 16 届欧洲复合材料会议。西班牙塞维利亚。8 页。• Guigon C、Pannier Y、Beringhier M、Lafarie - Frenot MC 和 Rakotoarisoa C.(2013 年)“温度和热循环对 RTM 工艺制造的 3D 编织 CMO 阻力的影响”。JNC18,第十八届全国复合材料日。法国南特。• Gigliotti,M.、Grandidier,J.C.、Lafarie-Frenot,M.C.(2014)“有机基质复合材料的老化。“案例研究”,载于《工程技术》,AM 5 322,T.I. 版,巴黎,34 页 • Gigliotti,M.,Grandidier,J.C.,Lafarie-Frenot,M.C.(2013)“有机基质复合材料的老化。建模工具”,《工程技术》,AM 5 322,T.I. 版,巴黎,17p • Lafarie-Frenot MC,Ho NQ。(2006)“热循环条件下自由边层内应力对 CFRP 板层损伤过程的影响”。复合材料科学与技术; 66: 1354-65。• Lafarie-Frenot MC、Rouquie S、Ho NQ 和 Bellenger V. (2006)“等温老化和热循环过程中 C/环氧层压板损伤发展情况比较”。复合材料 A 部分:应用科学和制造; 37: 662-71。• Rouquie S、Lafarie-Frenot MC、Cinquin J、Colombaro AM。(2005)“中性和氧化环境中碳/环氧层压板的热循环”。复合材料科学与技术; 65: 403-9。
