交流信号不受地磁噪声污染。磁性 ELF ~ 1/R 2 ,检测距离更长。使用相同标量 MAD 磁强计。磁强计本底噪声低(~ 0.1 pT/ Hz)。检测范围主要受环境噪声限制:1 pT/ Hz 为 400m,0.1 pT/ Hz 为 1200m。这项工作解决了单通道噪声问题
免责声明:本文件并非由加拿大国防部下属机构加拿大国防研究与发展编辑部出版,但将被编入加拿大国防信息系统 (CANDIS),即国防科技文件的国家存储库。加拿大女王陛下(国防部)不作任何明示或暗示的陈述或保证,也不对本文件中包含的任何信息、产品、流程或材料的准确性、可靠性、完整性、时效性或实用性承担任何责任。本文件中的任何内容均不应解释为对其中检查的任何工具、技术或流程的特定用途的认可。依赖或使用本文件中包含的任何信息、产品、流程或材料的风险由使用或依赖本文件的人自行承担。对于因使用或依赖本文件所含信息、产品、流程或材料而产生的或与之相关的任何损害或损失,加拿大不承担任何责任。
已被研究用于治疗不同的神经精神疾病,如中风 (Capone 等人,2009 年) 和抑郁症 (Bagheri Hosseinabadi 等人,2019 年)。根据大多数研究,ELF-MF 是安全且耐受性良好的 (Di Lazzaro 等人,2013 年)。然而,之前的论文表明,动物 (Jadidi 等人,2007 年) 和人类 (Podd 等人,2002 年;Corbacio 等人,2011 年) 暴露于 ELF-MF 后,记忆力和学习过程会恶化。相反,其他研究报告称,长期暴露于 ELF-MF 后,社会认知记忆 (Varró 等人,2009 年) 和空间学习 (Liu 等人,2015 年) 产生积极影响。长期增强 (LTP) 是突触可塑性的一种形式 (Bear and Malenka, 1994),被认为是学习和记忆最重要的分子机制之一。ELF-MF 会影响体外 (Ahmed and Wieraszko, 2008; Varró et al., 2009; Balassa et al., 2013) 和动物模型 (Komaki et al., 2014) 中的突触可塑性,但这种影响的类型和重要性仍不清楚。事实上,一些研究报告了 LTP 的增加 (Ahmed and Wieraszko, 2008; Komaki et al., 2014),而其他研究则表明 LTP 减少了 (Balassa et al., 2013)。此外,还没有专门的研究调查过这种对人类的影响。最近,类似于实验性 LTP 模型的重复经颅磁刺激 (rTMS) 方案已被引入。被称为间歇性 θ 爆发刺激 (iTBS) 的 rTMS 范例可使皮质兴奋性长时间增加 ( Huang 等人,2005 )。作用于 N-甲基-D-天冬氨酸 (NMDA) 受体水平的药物会影响 iTBS 的效果 ( Huang 等人,2007 ),这支持了 iTBS 后遗症涉及 LTP 样变化的假设。因此,通过这种技术,可以非侵入性地评估人类的突触可塑性。本研究的目的是通过 iTBS 评估 ELF-MF 暴露是否会影响皮质发生 LTP 样可塑性的倾向。
摘要:岬角裂流,有时也称为边界裂流,是冲向从海滩向海延伸的天然或人工障碍物(如岬角或丁坝)的裂流。它们可能是由沿岸流对障碍物的偏转或由于障碍物背风处的波浪阴影导致的沿岸破碎波高变化所驱动的。因此,驱动机制主要取决于波浪相对于天然或人工障碍物的入射角。我们分析了 42 天的速度剖面测量值,这些测量值是在法国西南部安格雷高能中大潮海滩的天然岬角上进行的。在秋冬季节,随着潮位变化,在 6.5-10.5 米深处收集的,离岸显著波高和周期分别为 0.9-6 米和 8-16 秒,波浪入射角范围为 -20 ◦ 至 20 ◦。这里我们分析了对应于大约 24 天测量的偏转裂口配置,其中随着波浪和潮汐条件的变化,流速计交替位于裂口颈部、裂口头部或远离裂口的位置。偏转裂口与较大的离岸定向速度(高达 0.6 米/秒的深度平均速度)和低能至中等能波的潮汐调制有关。发现偏转裂口的垂直剖面从裂口颈部的深度均匀变化到裂口头部离岸深度变化剧烈的变化,最大速度位于表面附近。裂口的极低频运动非常剧烈,范围为 10-60 分钟,主要峰值周期约为 40 分钟,即周期比通常报告的要长。在冲浪区边缘以外测量到的强烈的离岸速度为偏转裂口提供了新的见解,它是海湾(或结构控制的)海滩与内架和/或相邻海湾之间水和沉积物交换的主要机制。
频谱的不同部分用于不同的军事目的。无线电传输的数据速率相对较低,特别是在极低频率范围内。但是,它们能够长距离传输并穿过建筑物和树木等固体物体,因此经常用于通信设备。微波的吞吐量(数据上传和下载速率)比无线电波更高,因此能够传输更多数据,但范围更有限,并且可能被固体物体干扰。因此,微波通常用于雷达和卫星通信。发射能量的红外波可用于情报和目标数据,因为它们与热源密切相关。X 射线通常用于飞机维护,以识别机身中的裂缝。最后,伽马射线是高能辐射,有助于识别潜在的核事件。以下讨论重点介绍国防部对频谱的无线电波、微波和红外方面的使用。频谱的应用军方使用整个频谱来支持情报和军事行动。这些应用范围包括使用极低频无线电波与水下潜艇进行通信、使用微波作为飞机之间的连续数据链、使用红外和
圣阿西斯 CTM 由 24 名水兵操作,受到莫雷尔海军步枪连的保护,是战略海洋部队 (FOST) 的四个传输中心之一。它的天线由 10 个 250 米高的塔架支撑,可以实现洲际、特别是跨洋传输,以方便核动力弹道导弹潜艇 (SNLE) 和 SSN。通过一年 365 天、每天 24 小时不间断地发射极低频辐射,CTM 为法国核威慑态势的海洋部分实施做出了贡献。它们保证向海上潜艇持续传输政府命令以及潜艇部队和FOST的指挥信息。
超低频磁场 (ELF-MF) 通过诱导瞬时质膜孔/损伤显著增强细胞对甲氨蝶呤的吸收。与未接受 ELF-MF 处理的对照组相比,通过电磁诱导膜孔增强的甲氨蝶呤“剂量负荷”导致与正常对照组相似的结果,同时体外使用明显较小的治疗剂量。与 ELF-MF 一起使用时,大约 10% 的典型治疗剂量产生了类似的结果。ELF-MF 增加体外 PC12、THP-1 和 HeLa 增殖(对照组的 120%)。粘附细胞分析表明,与对照组相比,向诱导划痕损伤的迁移明显减少(24 小时内 20 毫米)。我们的结果表明 ELF-MF 在肿瘤治疗中发挥着重要作用,这开辟了一些新的和令人兴奋的可能性,包括使用较小治疗剂量的化疗药物和破坏肿瘤转移。© 2022 作者。由 Elsevier Inc. 出版。这是一篇根据 CC BY 许可开放获取的文章(http://creativecommons.org/licenses/by/4.0/)。
TRIM-S 的四个维度(精力、好心情、动力和放松)显示出特定于条件的反应模式,与回答格式大不相同。此外,对整体舒适度的评级也显示出特定于条件的反应,与回答格式大不相同。触摸健康时 HR 较高,无聊时 HR 较低。HRV 高频相对功率 (HF%) 与无聊和放松特别相关。HRV 极低频相对功率 (VLF%) 与条件成反比,与 HRV 低频相对功率 (LF%) 相比,与情绪激活具有一定的敏感性,在 VLF% 中观察到TRIM-S 的激活相关维度、精力和放松与心血管活动有关,但动力和情绪在主观反应水平上更敏感地通过评级进行评估,与回答格式大不相同。
噪音污染被恰当地描述为现代瘟疫之一。[1] 由于嘈杂的环境会对健康产生许多不利影响,从睡眠障碍到心血管疾病,减少人类接触过多噪音对于居住在城市的大量人口的公共健康至关重要。 关于吸音材料,最佳选择取决于预期的声音频率范围; 衰减高频声波的解决方案依赖于与极低频噪声解决方案完全不同的吸收机制。 在室内,最常用的吸音材料本质上是多孔的,因为它们能够以相对较薄的层有效吸收中高频声音。 市场上常见的多孔吸收材料,目标是在 350 Hz 以上吸收超过 90%,包括玻璃棉和矿棉以及由三聚氰胺或聚氨酯制成的吸音泡沫。 在这里,我们回顾了气凝胶的声学特性,并展示了它们挑战和超越当前市场标准的吸收特性的巨大潜力,无论我们谈论的是气凝胶在声学和声学方面的性能。
摘要 —本文介绍了一种由工作在亚阈值区域的串联 PMOS 器件组成的新策略和电路配置,用于实现极低频有源 RC 滤波器和生物放大器所需的超高值电阻器。根据应用不同,例如生物放大器中的信号带宽可能从几 mHz 到最高 10 kHz 不等。提出了三种不同的电阻结构来实现超高阻值。虽然提出的超高阻值伪电阻器的阻值在几 T Ω 的数量级,但它们占用的片上硅片面积很小,这是超低功耗可植入生物医学微系统中模拟前端电路设计的主要问题之一。此外,这些超高阻值电阻器导致使用小电容来产生非常小的截止频率。因此,实现电容所需的大面积也大大减少。所提出的电阻结构在宽输入电压范围(-0.5 V~+0.5 V)内变化很小,约为7%和12%,从而显著改善了生物放大器的总谐波失真和系统的模拟前端。在180nm CMOS工艺中设计的不同电路的仿真结果证明了所提出的超高阻值伪电阻的优势。