背景和目标:极低出生体重婴儿 (VLBW) 面临不良生长和神经发育结局的风险。我们旨在评估一组早产 VLBW 新生儿重症监护病房 (NICU) 住院期间的生长与长期神经发育结局之间的关联。方法:我们从 2014 年 1 月至 2017 年 4 月在我们诊所的随访服务中进行了一项纵向观察性研究。在我们医院出生并参加随访项目的所有早产 VLBW 婴儿均符合研究条件。使用格里菲斯智力发育量表在 12 和 24 个月矫正年龄进行神经发育评估。结果:研究人群包括 172 名受试者(47.1% 为男性),平均孕周为 29 周,平均出生体重为 1,117 克。从出生到出院,头围的 Δ z 分数增加一元论,与 24 个月矫正年龄时一般商数增加 1.6 分相关。还发现与分量表 C 和 D 存在联系。同样,身长 Δ z 分数的增加与更好的 24 个月分量表 C 分数相关,尽管未达到统计学意义。未发现体重增加与 24 个月时的结果有任何关系。结论:NICU 住院期间的生长似乎与 24 个月矫正年龄时更有利的神经发育结果相关,尤其是在听力和语言领域(分量表 C)。住院期间对生长参数的纵向评估有助于识别生命最初几年有不良神经发育结果风险的受试者。
摘要 极低地球轨道 (VLEO) 已被提议作为一种有益的太空任务模式,因为它们倾向于提高仪器的空间分辨率并降低单位质量的发射成本。然而,对于目视仪器来说,这些好处是以仪器扫描宽度减小为代价的。这种减少导致地球上某些区域的重访时间更长,实现全球覆盖的时间也更长。相反,光检测和测距 (激光雷达) 作为一种主动遥感技术,由于信噪比的提高,可以从较低海拔的较大扫描宽度中受益。对这种关系的研究表明,激光雷达扫描宽度与海拔的平方成反比,因此,提供所需激光雷达覆盖所需的航天器数量也与海拔的平方成反比。对合适推进系统的研究表明,尽管推进剂质量和维持轨道所需的推进器数量随着海拔的降低而增加,但由于所需航天器数量较少,整个系统的质量以及发射成本通常会随着海拔的降低而降低。对于给定的任务、航天器平台和推进系统,可以确定一个 VLEO 高度,从而实现最低的总任务成本。
在生命的早期优化营养的早期营养中的抽象目的是衰减早产的不良神经系统后果并有可能改善神经发育结果的关键机会。我们假设在肠胃外营养(PN)中使用多组分脂质乳液(MLE)与在极低的出生体重(ELBW)婴儿中等效年龄(TEA)的脑磁共振上的小脑脑磁共振上的较大体积有关。研究设计,我们分析了妊娠28周的早产儿和/或出生体重<1,000 g在我们以前的试验中随机分配的一群早产儿中的大脑磁共振成像(MRI),以接受MLE或大豆基脂质乳液(SLE)。该研究的主要结果是小脑体积(CEV),该小脑体积(CEV)是在茶中获得的MRI。次要结果包括总脑体积(TBV),上重量,脑干量和CEV校正了在TEA上获得的MRI评估的TBV。然后分析了34名婴儿的茶中的MRI:MLE组中的17个,SLE组为17。两个研究组之间进行MRI的月经后年龄(PMA)是可比的。MLE组中的CEV以及经PMA校正的CEV均高于SLE组。在考虑的其他大脑体积之间没有发现差异。结论我们的结果表明,在PN中使用MLE可以促进ELBW婴儿的CEV生长,并在TEA时以MRI价值促进。
太空科学的未来取决于我们吸引和调动学生参与科学、技术、工程和数学 (STEM) 领域的能力。真实的、亲身体验太空应用可提高学生对 STEM 学科的参与度和学习能力,并有助于吸引对 STEM 职业不感兴趣的学生。弗吉尼亚商业太空飞行管理局 (Virginia Space)、Twiggs Space Lab, LLC (TSL)、Orbital ATK、NearSpace Launch, Inc. (NSL) 和美国国家航空航天局 (NASA) 瓦洛普斯飞行设施合作开发了 ThinSat 计划,为学生团队提供设计、开发、测试和监控他们自己的实验有效载荷的机会,这些有效载荷将集成到一颗皮卫星中,并从 Orbital ATK 的 Antares 火箭的第二级发射。
皮质骨的弹性模量低于 30 GPa,而生物医学钛植入物的弹性模量高于 100 GPa。这种弹性模量的不匹配会导致由应力屏蔽效应和植入物的骨整合不良引起的骨吸收。本研究旨在确定激光定向能量沉积 β 型 Ti 合金锭中形成的强烈 <100> 纤维织构是否会导致弹性模量显着降低。我们证明激光沉积的 β 型 Ti-42Nb (wt%) 合金锭表现出各向异性的力学性能。由于强烈的 <100> 纤维织构,在构建方向上获得了低弹性模量(低于 50 GPa)和高屈服强度(高于 700 MPa)。新型激光沉积 Ti-42Nb 合金还表现出优异的体外生物性能,表明其适用于生物医学应用。
在接近太赫兹频率下工作的下一代无线通信系统中,具有尽可能低的介电常数和损耗因子的电介质基板变得至关重要。在本文中,我们采用模板辅助溶胶-凝胶法合成了高度多孔(98.9% ± 0.1%)和轻质二氧化硅泡沫(0.025 ± 0.005 g/cm 3 ),它们具有极低的相对介电常数(300 GHz 时 ε r = 1.018 ± 0.003)和相应的损耗因子(300 GHz 时 tan δ < 3 × 10 −4)。在泡沫板上浸涂一层纤维素纳米纤维薄膜后,可获得足够光滑的表面,在此表面上可方便地沉积对电子和电信设备应用很重要的导电金属平面薄膜。在这里,银薄膜的微图案通过荫罩溅射到基板上,以展示双开口环谐振器超材料结构作为在亚太赫兹波段工作的射频滤波器。
电子诱导的电子发射通常用二次电子产额 (SEY) 来量化,有时也称为总电子产额 (TEY)。低 SEY 材料或表面旨在减少航天器和卫星的表面充电 [1,2] 以及减轻粒子加速器中电子云的形成。[3–7] 几十年来,为了满足不断发展的技术需求,人们在元素材料表面和化合物中 [7–17] 深入研究了二次电子产额的一次电子能量依赖性以及发射电子的动能分布。对于许多应用,低于 1 的 SEY 最大值足以避免撞击电子的级联倍增。然而,对于其他解决方案而言,进一步降低 SEY 可能会有所帮助,以抑制可能产生背景噪声或使测量信号恶化的反射、背散射和二次电子,例如在电子收集器中,用于测量超高真空 (UHV) 中的低电子电流或用于基于电离的压力计。[18,19]
• 有历史结果可用,并表明 MRL 超标风险极低 • 作物管理实践和 PPP 使用存在极低的 MRL 超标风险,并且自上次可用测试完成以来未发生重大变化 • 考虑了意外污染途径的风险(例如遗留污染、喷雾漂移) • 定义了替代测试频率,确保每三年至少完成一次测试
每个孩子都应该享有优质的早期学习机会。投资学前教育比投资成年教育的回报更高。在优质早期儿童发展 (ECD) 计划上投入的每一美元,预计投资回报可能高达 17 美元。然而,全球对 ECD 的投资仍然极低。边缘儿童,包括生活在贫困中的儿童、残疾儿童以及受危机和冲突影响的儿童,参加 ECD 计划的可能性极低。