硅自旋量子比特的最新进展增强了它们作为可扩展量子信息处理平台的地位。随着单量子比特门保真度超过 99.9% [1],双量子比特门保真度不断提高[2-6],以及该领域向大型多量子比特阵列发展的步伐[7,8],开发高效、可扩展的自旋控制所需的工具至关重要[9]。虽然可以利用交流磁场在量子点 (QDs) 中实现单电子自旋共振 [10],但所需的高驱动功率和相关热负荷在技术上具有挑战性,并限制了可达到的拉比频率 [11]。随着自旋系统扩展到几个量子比特以外,最小化耗散和减少量子比特串扰的自旋控制方法对于低温量子信息处理将非常重要 [12]。电偶极自旋共振 (EDSR) 是传统电子自旋共振的一种替代方法。在 EDSR 中,静态梯度磁场和振荡电场用于驱动自旋旋转 [13]。有效磁场梯度的来源因实现方式而异:本征自旋轨道耦合 [14-16]、超精细耦合 [17] 和 g 因子调制 [18] 已用于将电场耦合到自旋态。微磁体产生的非均匀磁场 [19, 20] 已用于为 EDSR 创建合成自旋轨道场,从而实现高保真控制 [1]。方便的是,该磁场梯度产生了一个空间自旋轨道场。
增材制造 (AM) 通过提供快速制造能力,彻底改变了液体火箭发动机的部件设计。这为推进行业的开发和飞行计划带来了重大机遇,从而节省了成本和时间,并通过新设计和合金开发提高了性能。一个值得注意的例子是 GRX-810 氧化物弥散强化 (ODS) 合金,它是专门为极端温度而开发的。这种镍钴铬基合金是使用集成计算材料工程 (ICME) 技术创建的,旨在专注于具有出色温度和抗氧化性能的新型材料。GRX-810 合金利用 AM 工艺将纳米级氧化钇颗粒融入其整个微观结构中,从而实现了显着的增强。与传统的镍基高温合金相比,GRX-810 合金的抗拉强度提高了两倍,蠕变性能提高了 1,000 倍,抗氧化性能提高了两倍。 NASA 成功展示了使用 GRX-810 合金通过激光粉末床熔合 (L-PBF) 和激光粉末定向能量沉积 (LP-DED) 工艺开发和制造部件。我们付出了大量努力来建模、评估冶金性能、开发热处理工艺、表征微观结构和确定机械性能。GRX-810 合金专为航空航天应用而设计,包括液体火箭发动机喷射器、预燃器、涡轮机和热段部件,可承受高达 1,100°C 的温度。开发这种合金的目的是缩小传统镍基高温合金和耐火合金之间的温度差距。本文对 GRX-810 合金与其他航空航天合金进行了全面的比较,讨论了其微观结构、机械性能、加工进步、部件开发和热火测试结果。此次研发的最终目标是提升 GRX-810 合金的技术就绪水平 (TRL),使其能够融入 NASA 和商业航空航天应用。
图1所示的垂直NPN设备制造的标准过程始于P类型基板。基板在将制造NPN设备设备的区域中植入N型掺杂剂(例如砷)。该植入物被称为埋藏层,因为下一步是N型硅的外延生长。掩埋层的板电阻远低于外延层的电阻。AR分离扩散是用诸如硼的P Tyne掺杂剂进行的。这会产生由P型隔离所包围的N型材料的电隔离岛。是这些N型区域,它们是侧向NPN设备的收集器。直接在这些区域的下方将是先前讨论的埋藏层。掩埋层通过为电流流动创造低电阻路径来降低收集器电阻。这是产生所需的电气设备特性所需的。进入N型岛群体被扩散为P型硼基。当将N型掺杂剂(如磷)扩散到碱基中时,发射极会形成。垂直NPN结构现在很明显。
摘要 - 这项工作着重于在国际Muon Collider合作(IMCC)框架内研究的MUON对撞机加速器的电阻偶极子磁铁的设计以及欧盟(Mucol Pro-gram)的参与。设计规格要求这些偶极子被列为非常快速的坡道,坡道时间在1 ms到10 ms的范围内。这反过来又导致需要非常高的功率,以数十GW的顺序为需要实现的快速循环同步性(RC)链。对于磁铁设计,考虑了三种几何配置,并在这项研究中进行了比较,即沙漏磁铁(以前在美国Muon Collider设计研究中考虑),窗框磁铁和H型磁铁。进行了优化程序,以最大程度地减少磁铁中存储的能量,以降低快速坡道期间的能量。根据总存储能量,运营量周期中的总损失和现场质量,比较了本文中三种考虑的配置的结果。由于低储存能量和低损耗,H型磁铁被识别为适合配置。
在量子物理学中,拓扑相可以从自旋为 1/2 的布洛赫球面设计出来,该球面由于径向磁场而呈现出刺猬结构。我们详细阐述了在双自旋模型中,一极处纠缠波函数的形成与一对有趣的半拓扑数之间的关系。与超导体中的库珀对类似,一极处的爱因斯坦-波多尔斯基-罗森对或贝尔态产生半通量量子,这里指的是表面上贝里曲率的一半通量。这些 1/2 数字还指每个球面极点处存在自由马约拉纳费米子。当从北向南行驶时,以及从极点的圆极化场行驶时,可以测量拓扑响应,揭示受保护横向电流的量化或半量化性质。我们展示了纠缠波函数在能带结构中的应用,在动量空间中引入了一个局部标记,以表征双层几何中二维半金属的拓扑响应。
阅读是一种基础语言和沟通技巧,对于儿童在学校和生活中的成功至关重要(Dickinson&Porche,2011年),用于建立和维持关系(Hebert-Myers等,2006),并影响学校在学校的学习和心理健康(Boyes等,2018; Roulstone等,2011,2011)。共享书阅读(SBR)是成年人与孩子一起阅读书籍并参与有关故事内容的活动或对话。这被认为是一种重要的做法,它促进了以后的独立阅读,并且应该是家庭和幼儿教育和护理环境的常规活动(ECEC)(ECEC)(Senechal&Young,2008年)。这项研究检查了挪威ECEC中的SBR,其特定的重点是用嗅觉刺激的阅读。我们将重点限制在虚构叙事(故事)和学习的过程(而不是学习阅读)的过程中。
本研究的主要目的是描述一种通过分裂四元数实现的新型白平衡算法。该算法的独特之处在于,它与最近开发的色彩感知数学模型 [9, 7] 相一致。该模型提供了一种替代 CIE(国际照明委员会)的色彩描述方法,即通过比色空间中的三个坐标(例如 RGB、HSV、CIELab 等)描述色彩。它还强调了这样一个事实:感知色彩应被描述为(感知)测量过程的结果。测量方程是所提算法的基石,它使用量子信息工具并表达所谓的 L¨uders 运算的结果。对这种关于色彩感知的新范式的完整数学描述超出了本文的范围。为了保持自洽,本模型的基本概念将在第 2 部分回顾,对更多细节感兴趣的读者可以参阅以下论文 [9, 7, 4, 6, 8, 5]。我们认为值得一提的是,本模型能够:内在地调和三色视觉与赫林对立 [4, 6];形式化牛顿色盘 [4];单独提出希尔伯特-克莱因双曲度量作为自然的感知色距 [5];解决将无限感知色锥限制为感知色凸有限体积立体这一长期存在的问题 [4, 9];预测色对立的不确定性关系 [8],并给出感知色感知属性的连贯数学定义 [7]。正如我们将在第 2 节中更详细地强调的那样,颜色测量方程发生在代数 H (2 , R ) 中,该代数由 2 × 2 对称矩阵组成,具有实数项。为了获得有意义的
• 内务管理和介绍 • 第 1 单元:ONA 和服务组 • 第 2 单元:背景支持规划 • 第 3 单元:确定正确的工作时间 • 结论和资源 • 问题