热带降水极端及其随着表面变暖的变化,使用全球风暴解析模拟和高分辨率观察结果进行了研究。模拟表明,对流的中尺度组织是不能以常规的全球气候模型来物理代表的过程,对于热带每日累积降水极端的变化很重要。在模拟和观察结果中,每日降水极端在更有条理的状态下增加,与较大但频繁的风暴有关。重复模拟以使气候变暖会导致每月均值每日降水极端的增长。较高的降水百分位数对对流组织具有更大的敏感性,预计随着变暖而增加。没有组织变化,热带海洋上最强烈的每日降水量以接近Clausius-Clapeyron(CC)缩放的速度增加。因此,在未来的温暖状态下,组织的增加,海洋的每日极端降水量最高的速度比CC缩放更快。
企划管理部 IoT应用推进部 社会基础设施解决方案本部 金融及企业解决方案本部 网络系统本部 防卫系统本部 IoT平台本部 系统中心 基础技术中心 信息通信本庄工厂 信息通信沼津工厂
3月23日,由Qiyuan Green Power,Shanghai Boonray Intellighent Technology Co.,Ltd。,Top Gear等共同开发的无人电池交换矿业卡车,并配备了由上海Boonray Intellray Intellighent Technology Co.,Ltd.,Ltd.,Ltd。目前,它已在South Cement的矿山中进行了方案终端申请测试。根据现场测试,“电牛”可以将二氧化碳的排放量减少至少260吨,从而节省至少20万卢比的劳动力成本。
设计用于极端环境中的复合材料时,必须考虑几个关键因素。这些材料必须具有独特的特性组合,使它们能够在高压力,温度,辐射和其他挑战性条件下运行。关键注意事项包括。极端环境通常涉及较大的温度变化,从外太空的冷冻到通过重新进入地球大气产生的强烈热量。在这些条件下使用的复合材料必须具有较高的热稳定性和对热降解的抗性。碳纤维增强聚合物(CFRP)和陶瓷基质复合材料(CMC)是设计用于高温应用的材料的两个示例[2]。CFRP通常在航空航天中用于其出色的强度与重量比和导热率,而CMC则设计用于耐用高达2,000ºC的温度,并用于涡轮发动机和重新进入隔热罩。
摘要海洋负责吸收人为CO的25%的25%的排放量,而存储量是大气的50倍。海洋中的生物过程起着关键作用,使大气中的CO 2水平比以前低约200 ppm。海洋具有占用和存储CO 2的能力对气候变化很敏感,但是有助于海洋碳储存的关键生物学过程尚不确定,这些过程的响应和反馈方式也是如此。因此,生物地球化学模型在其相关过程的代表方面差异很大,在未来的海洋碳储存的预测中驱动了很大的不确定性。本综述确定了影响海洋碳储存方式未来在三个主题领域的未来如何变化的关键生物学过程:生物学对碱度,净初级生产和内部呼吸的贡献。我们对现有文献进行了审查,以确定在影响未来生物学介导的碳在海洋中储存的过程,并根据专家评估和社区调查确定过程的优先级。专家评估和调查中的高度排名过程都是:对于碱度 - 对碳酸钙产量的高水平理解;对于初级生产 - 资源限制增长,浮游动物过程和浮游植物损失过程;用于呼吸 - 微生物溶解,颗粒特征和粒子类型。此处提供的分析旨在支持针对新过程理解的未来领域或实验室实验,以及旨在实现生物地球化学模型开发的建模工作。
在全球范围内(在国家和社区层面上可复制)的另一项关键干预是将现有的关键利益相关者社区联系起来,以利用,孵化,策划和扩展最佳实践,包括应对策略和抗议机的最佳实践与在线极端言论。连接是一个重要的动作框架,因为已经有大量积极反对在线仇恨的基层计划和组织。将它们连接到在线仇恨的不同方面的特定目标可以大大提高其有效性和可扩展性,还可以提供解决系统问题(例如种族偏见)的方法。一个例子是AI4Dignity项目,该项目正在开发可复制的过程模型,以通过连接人工智能(AI)开发人员,事实检查员和来自不同国家的学术民族志学家来创建编码的协作空间,以检测和标记极端语音。此类活动不仅将有助于扩大技术访问事实检查社区的访问,还可以解决诸如偏见和缺乏