Bohr和Sommerfield原子模型,包括吸收发射光谱,Rydberg的方程及其应用,光谱系列及其极限,物质和辐射的双重行为,De-Broglie的关系,Heisenberg的不确定性原则,Orbit概念,Orbit b)量子数量:定量,定义,确定和fribes,de and s sheiss and s s s s s s s s sheisentip and de-broglie的关系,b)淋巴结,S-,P-和D原子轨道的方向。c)电子构型定义,在各种轨道中填充电子的规则:保利排除原理,Aufbau原理和Hund的最大多样性规则,其意义,一半和完全填充轨道的稳定性,交换能量,交换能量,各种原子轨道的相对能量,各种原子轨道,解剖学构型。2。元素的定期分类:
•将对不同气候模型中的海洋中尺度的表示进行书目分析,尤其是在Optimesm框架内使用的参考书目; •将建立气候模拟,再加上CNRM-CM6-LR和CNRM-ESM2,包括2024年托雷斯的参数化,在工业前的控制条件下以及在温室气体强迫的情况下; •将分析模拟的结果,以确定:(i)在耦合构型中中尺度的海洋运输在多大程度上与Torres等人(詹姆斯(James))强迫的海洋模式中的记录的构型一致(在准备中); (ii)这些中尺度运输如何影响地球系统的其他组成部分; (iii)通过这种中索修改了气候对温室气体强度的气候反应的机制,特别关注海洋储存热量和碳和大型海洋循环系统。
分析了使用静态波纹模型在热扭曲的Cu(111)表面上进行H 2解离化学吸附的最新的6D量子动力学模拟,分析了静态波纹模型,以产生多种(实验可用的)可观察结果。在几个不同的网格上使用波袋以及两种不同的分析方法,在实验表明慢速反应通道占主导地位的区域中,使用波袋以及两种不同的分析方法来定量预期误差,尤其是对较低反应概率的重要误差。显示出不同热扭曲的表面板的最低反应屏障位点不仅在能量上是在能量上,而且在几何学上是在表面构型之间不同的,这些反应板在表面构型之间也有所不同,这些反应表面构型在包括表面温度效应时可用于解释几种动态效应。直接组合模拟的飞行时间光谱与从最先进的解吸实验获得的光谱与完美的晶格老板方法相比,一致性大大改善。与实验旋转和振动效率的一致性一致,当在理论模型中包括热激发表面时,也有所提高。最后,我们介绍了针对较低旋转激发态的旋转四极比对参数中明显的量子效应,这强调了该系统的仔细量子动力学分析的重要性。
由于设备和互连的缩小以及电子、航空航天和医疗应用的先进封装和组装,微纳米级电子元件的制造变得越来越苛刻。增材制造技术的最新进展使得制造微尺度 3D 互连结构成为可能,但制造过程中的传热是影响这些互连结构可靠性制造的最重要现象之一。在本研究中,研究了三维 (3D) 纳米粒子堆积的光吸收和散射,以深入了解纳米粒子内的微/纳米热传输。由于胶体溶液的干燥会产生不同的纳米粒子构型,因此研究了三种不同铜纳米粒子堆积构型中的等离子体耦合:简单立方 (SC)、面心立方 (FCC) 和六方密堆积 (HCP)。分析了单散射反照率 (ω) 与纳米颗粒尺寸、填充密度和配置的关系,以评估纳米颗粒填充物中 Cu 纳米颗粒的热光特性和等离子体耦合的影响。该分析深入了解了铜纳米颗粒中等离子体增强的吸收及其对纳米颗粒组件激光加热的影响。[DOI:10.1115/1.4047631]
我们检查了自旋影响对纳米何纳米式托管零能量模式的非平衡传输特性的影响,并与铁磁铅与量子点连接耦合。使用实时示意技术,我们确定了非线性响应制度中的电流,差分电导和电流互相关。我们还探索了系统的不同磁性构型中的传输,可以通过隧道磁场量化。我们表明,Majorana准粒子的存在在所有自旋分辨传输特性中都产生了独特的特征,尤其是零偏置异常,负差分电导,负隧道磁磁性,并且在当前的交叉相交中也会反映出来。此外,我们研究了零偏置异常对各种系统参数的依赖性,并证明了其对系统的磁构型的依赖性以及铅中的自旋极化程度。也发现了隧道磁场抗性的高度非平凡行为,该磁力磁力表现出增强或负值的区域,这是由耦合到Majoragaina丝导致的新特征。
10:15-11:00 am邀请了在蛋白质 - 蛋白质相互作用界面上阐明构型蛋白化学的治疗素化学,用于治疗性干预博士Shailendra Asthana Asthana首席科学家 - II Bric-II Bric-Translational-Translational Health Shealth Science和技术研究所(Thsti)Faridabad,Haryana
电动汽车(电动汽车)的电力单元(即电池)在充电或排放时会产生热量,从而导致其性能和可靠性随着时间的推移而恶化。本文研究了流经微型通道的液体冷却剂的几何和热流体参数。这些嵌入在电动汽车电池的表面中,以减少过热。设计参数,例如纵横比和微型频道的角度取向,以随机调查几种几何构型,这些几何构型几乎不直观。冷却液质量流量和流体入口温度也通过随机分布值的大数据集进行变化。与经验验证的模型一起实施了实时的EV驾驶周期,以评估电池操作,这证明了电池的热状态具有不同级别的冷却改造的复杂依赖性。该研究还分析了泵送和冷却能量需要驱动冷却液系统的寄生动力消耗,以实现最佳设计的改装,以实现可靠的电池性能。发现迷你通道参数极大地影响了电池的热性能。但是,发现优化的情况在电池中具有最小的温度差和最小功率要求。液体入口速度为0.13 m/s,流体入口温度为312.9 K,纵横比为1.7,倾斜角为4.9◦
项目建议表观遗传异质性是一种新型治疗抗性急性髓样白血病(AML)的新型驱动力,是一种侵略性的血液癌,总体生存率较低,复发率很高。表观遗传失调在疾病进展中起着重要作用,因为表观遗传调节剂经常因缺失而丢失并进入单倍性调节剂。此外,现已将表观遗传药物用作标准治疗[1]。最近的一项研究表明,诊断时白血病细胞池的表观遗传异质性可归因于大约40%的复发。虽然可以使用大量方法来量化表观基因组异质性,但了解特定表观遗传构型和复发之间的关系需要单细胞方法。了解表观基因组异质性以及诸如MNX1等癌基因的激活如何导致加速肿瘤发生或耐药性对于改善AML治疗至关重要。我们推测,表观遗传调节剂的单倍不足会导致表观基因组异质性的水平升高,从而导致肿瘤发生和耐药性加速。在此项目中,临床医生将在诊断和复发中介绍来自AML患者的样本,以了解导致复发的特定表观遗传构型。我们将使用各种表观遗传构型的读数,包括单细胞ATAC-SEQ,用于分析染色质的可及性和SCTAM-SEQ,用于分析DNA甲基化[4]。该项目将需要对现有的批量数据进行分析,以查明该部门已经生成的较大人群中的变量区域,然后可以在单细胞级别上以更多详细信息进行介绍。除了在DKFZ的单细胞开放式实验室中执行单细胞测定外,该项目还将有一个大的计算部分,分析生成的数据也与批量数据有关。最终,我们将探索表观遗传调节,这是AML以外的癌症抗药性的主要标志(例如肺癌,前列腺癌),为精密医学铺平了道路。
摘要:开发治疗福氏耐格里变形虫脑感染的药物是一项尚未满足的医疗需求。我们结合了化学信息学、基于靶标和基于表型的药物发现方法来识别针对福氏耐格里变形虫必需酶固醇 14-脱甲基酶 (NfCYP51) 的抑制剂。总共对 124 种预先选定的计算机模拟化合物进行了针对福氏耐格里变形虫的测试。表型上鉴定出 EC 50 ≤ 10 μ M 的九个主要化合物。与 NfCYP51 共结晶集中在一个主要化合物上,即咪康唑类化合物 2a。2a 的 S 对映体产生了 1.74 Å 的共晶结构。然后合成并评估一组类似物,以确认 S 构型优于 R 构型以及醚键优于酯键。与 2a 相比,这两种化合物 S - 8b 和 S - 9b 的 EC 50 和 KD 有所提高。重要的是,它们都很容易被大脑吸收。S - 9b 的脑-血浆分布系数为 1.02 ± 0.12,这表明需要进一步评估其作为原发性阿米巴脑膜脑炎的先导物的价值。■ 简介