。cc-by-nc-nd 4.0国际许可证未通过同行评审获得证明)是作者/资助者,他已授予Biorxiv授予Biorxiv的许可,以永久显示预印本。它是此预印本的版权持有人(该版本发布于2024年4月8日。; https://doi.org/10.1101/2024.04.04.04.04.588465 doi:biorxiv Preprint
抽象的表面增强拉曼散射(SERS)平台可实现痕量分析物检测,具有重要的应用前景。通过构建/修改SERS底物的表面,可以将高稀释溶液中的分析物集中到局部活性区域中以进行高度敏感的检测。但是,由于制造过程的难度,平衡热点结构和同时平衡分析物的集中能力仍然具有挑战性。因此,制备密集有序的热点和有效浓度能力的SERS底物对于高度敏感的检测具有重要意义。在此,我们提出了AG和氟烷基修饰的分层装甲底物(AG/F-HA),该甲酸盐(AG/F-HA)具有双层堆叠设计,以将分析物浓度与热点结构相结合。微臂结构是通过飞秒激光处理来制造的,以充当超疏水和低粘合剂表面,以浓缩分析物,而阳极氧化铝(AAO)模板会形成纳米虫阵列,可作为密集和有序的热点。在热点和分析物浓度的协同作用下,Ag/f-Ha的检测极限降至10-7 m阿霉素(DOX)分子,RSD为7.69%。此外,AG/F-HA表现出极好的鲁棒性,可抵抗外部干扰,例如液体飞溅或磨损。基于我们的策略,通过对缺陷的微酮阵列进行构图,进一步探索了具有方向分析物浓度的SERS基板。这项工作为在各种情况下的现实实施打开了一种方法。
。cc-by-nc-nd 4.0国际许可证(未获得同行评审证书)获得的是作者/资助者,他已授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权所有,该版本于2024年4月2日发布。 https://doi.org/10.1101/2024.03.14.585029 doi:Biorxiv Preprint
为各种任务设计的多用途应用程序,可用于水平,倾斜和垂直激光应用。可以在X或Y轴上使用±5%(使用倾斜板的±15%)。将其转向其一侧,并将其用于布局和对齐作业。
块密码算法的圆键选择取决于特定算法。一般的想法是将初始键转换为用于每个加密或解密的一组圆形键[1]。选择圆形密钥的一般方法:主密钥生成:主密钥是用户提供的原始密钥。它必须足够长,足够随机,以确保加密安全性。通常,主要键是使用可靠的随机数生成器生成的。密钥共享:主密钥可以分为每回合中使用的几个子键。子键的数量和大小取决于特定的块密码算法。圆形键:可以使用特殊的钥匙扩展算法将子键转换为圆形键。该算法采用子键并生成一组圆形键,这些圆键用于每轮加密或解密。关键扩展:在诸如AES,DES或Blowfish之类的块密码算法中,密钥膨胀涉及各种操作,例如S-Box置换,圆形模式移动,XOR操作以及其他对子键位和字节的操纵。这些操作在生成圆形密钥时提供了非线性和多样性。使用圆形键:在加密或解密的每个阶段使用圆形键来转换数据块。每种类型都可以使用自己的圆形钥匙,也可以在以前类型的中间密钥上工作。在块密码算法中选择圆键是需要考虑安全性,随机性和关键强度的重要步骤。主要扩展过程通常包括以下步骤:加密标准通常为生成和使用特定算法的圆键提供指南和规格。对称块密码的最常见的圆形密钥生成算法之一是基于密钥加密的键扩展。
摘要:在数据驱动的系统中,数据探索对于做出实时决策至关重要。但是,大数据存储在很难检索的大量数据库中。近似查询处理(AQP)是一种基于数据摘要(摘要)的汇总查询的近似答案的技术,该数据密切复制了实际数据的行为;当对查询的大概答案在实际执行时间的一小部分中可以接受时,这可能很有用。本研究探讨了生成对抗网络(GAN)的新利用,用于生成可以在AQP中用于概要构建中的表格数据。我们彻底研究了概要构建过程带来的独特挑战,包括维持数据分配特征,处理有限的连续和分类数据以及保持语义关系,然后我们介绍了克服这些挑战的表格GAN结构的进步。此外,我们提出并验证一套用于评估GAN生成概要的可靠性的统计指标。我们的发现表明,先进的GAN变化具有产生高保真概述的有前途的能力,有可能改变AQP在数据驱动系统中的效率和有效性。
TX45,一种FC - 雷丝素融合,在人类受试者的剂量降低研究中,马萨诸塞州波士顿 - 2023年11月28日 - 构造治疗公司,一家生物技术公司,转化了新颖的GPCR治疗疗法的发现(GPCR靶向的受体),该公司宣布的是,今天已经宣布的是,今天已经宣布的是,今天已经宣布的是,该公司的生物技术公司的发现,该公司是宣布的,今天已经宣布了一部分,这是一家生物技术的生物技术公司,该公司宣布了一部分,这是宣布的。针对RXFP1受体的FC-雷丝蛋白融合程序。“我们第一次人类研究的开始是一个关键而令人兴奋的里程碑。我们期待看到患者的松弛素生物学潜力。”构造治疗总裁兼首席执行官Alise Reicin说。松弛素通过作为RXFP1受体的激动剂的作用,产生独特而多样的生物学作用,包括肺部和全身性血管舒张,组织重塑 /纤维化反转和炎症减少。由于这些功能,它提供了相似的潜在治疗应用,并在心肺疾病中预期有重大好处。被称为“妊娠激素”,在怀孕期间被上调,以帮助准妈妈的心血管系统满足发育中胎儿的需求增加,并重塑了与分娩有关的组织和肌肉骨骼结构。构造的TX000045 FC-激素融合蛋白(“ TX45”)是潜在的一流药物,这是由于蛋白质工程造成的,旨在克服人类激素的生物物理性质限制并实现最佳的药代动力学,靶向,目标参与和发展性特性。有关更多信息,请访问www.tectonictx.com,或在LinkedIn上关注我们。在健康志愿者的剂量升级安全研究完成后,TX45的持续发展将集中在解决心脏肺迹象的未满足需求的领域。“ TX45对于大量心血管疾病的患者可能是一种潜在的变革性疗法,”波士顿儿童医院儿童医院的联合创始人蒂姆·斯普林格(Tim Springer)博士说。他还补充说:“ TX45是公司在新型GPCR靶向生物学发展方面执行的能力的典范。我们期待着未来的临床计划从Tectonic的平台中出现。”关于由安德鲁·克鲁斯(Andrew Kruse)和哈佛医学院的蒂姆·斯普林(Tim Springer)共同创建的构造治疗性构造正在改变针对GPCR的抗体和其他生物药物,以开发针对当前治疗不足的患者的新疗法凭借其专有的Geode平台,构造旨在解锁该类别最困难的受体的治疗效用,而小分子药理学可能会棘手。投资者联系人:Christian Cortis,博士构造治疗ccortis@tectonictx.com(781)327-2606媒体联系人:Karen Sharma MacDougall ksharma@macdougall.bio(781)235-3060
摘要。Jordan 代数自然出现在 (量子) 信息几何中,我们希望了解它们在该框架内的作用和结构。受 Kirillov 对余伴轨道辛结构的讨论的启发,我们在实 Jordan 代数的情况下提供了类似的构造。给定一个实数、有限维、形式上实数的 Jordan 代数 J ,我们利用由对偶 J ⋆ 上的 Jordan 积确定的广义分布在分布的叶子上诱导一个伪黎曼度量张量。特别是,这些叶子是李群的轨道,李群是 J 的结构群,与余伴轨道的情况类似。然而,这一次与李代数情况相反,我们证明 J ∗ 中并非所有点都位于正则 Jordan 分布的叶子上。当叶子节点包含在 J 上的正线性泛函锥中时,伪黎曼结构就变为黎曼结构,并且对于适当的 J 选择,它与有限样本空间上非正则化概率分布的 Fisher-Rao 度量相一致,或者与有限级量子系统的非正则化忠实量子态的 Bures-Helstrom 度量相一致,从而表明 Jordan 代数数学与经典和量子信息几何之间的直接联系。
随着世界为了减轻环境影响,盐构造在实现能源转变目标中的重要性不能被夸大。盐轴承盆地在整个过渡过程中具有巨大的发展潜力。盐盆地可以用作氢,CO 2和废物的储存地点,并在盐体内和周围提供增强的地热能潜力。因此,表征成分的进步,了解内部盐变形,解码盐结构的演变以及理解在操作和放弃洞穴期间盐的行为对于未来的能量过渡至关重要。
