电沉积是制备合金的重要方法之一。利用电沉积合成合金的方法引起了广泛关注,因为它能够在室温下在金属基材上制备合金薄膜。到目前为止,含有六价铬(Cr 6 +)离子的电解槽已用于金属铬的电沉积。然而,众所周知,Cr 6 + 离子会引起有害的环境污染[4,5]。在欧盟,WEEE/RoHS(废弃电子电气设备/限制在电子电气设备中使用某些有害物质)指令限制使用Cr 6 + 离子[6]。因此,作为一种替代工艺,许多研究人员提出了从含三价铬(Cr 3 +)离子的电解槽中电沉积金属铬合金(例如 Co e Cr 和 Ni e Cr 合金 [7]、Fe e Cr 合金 [8] 和 Fe e Cr e Ni 合金 [9])。然而,众所周知,电沉积的电流效率受到很大限制,因为 Cr/Cr 3 + 的标准电极电位为 0.937 V(vs. Ag/AgCl/饱和 KCl),远不如铁族金属(例如 Ni/Ni 2 +、Co/Co 2 + 和 Fe/Fe 2 +)的电位高 [10]。在从水溶液中电沉积次贵金属的过程中,随着电流密度的增加,阴极附近的pH值升高[11]。pH值升高的原因是高电流密度下氢气析出速率高,导致阴极附近的H+离子消耗速率高。因此,在简单的水溶液中,Cr3+离子在高电流密度下会与阴极附近的六个水分子形成复合物[Cr(H2O)6]3+。具体而言,这些[Cr(H2O)6]3+离子会在酸性pH区(pH > 4.5)通过羟桥反应形成羟基桥接胶体聚合物[12,13]。阴极附近的这种胶体聚合物会抑制金属铬的电沉积。因此,通常在水溶液中加入甘氨酸、尿素或 N,N-二甲基甲酰胺 (DMF) 等络合剂来抑制 [Cr(H 2 O) 6 ] 3 + 离子的形成。在这些络合剂中,DMF 是众所周知的在金属电沉积过程中减少氢析出的有效络合剂 [14]。之前有几种
从减贫到经济稳定和发展,可以分析出,世界各国都提到团结合作,互利共赢,这是团结的主要定义。中国通过“一带一路”等倡议致力于基础设施建设,这是一个庞大的基础设施和经济发展项目,旨在通过建设基础设施网络改善全球连通性,促进了与各地区国家的经济合作和贸易,促进了贸易和投资流动。中国审慎的财政政策、对金融机构的有效管理以及对经济挑战的明智处理,为全球市场注入了信心。巴基斯坦就是一个例子,因为中国-巴基斯坦经济走廊(CPEC)是“一带一路”的旗舰项目。通过建立现代化的交通网络、许多能源项目和经济特区,CPEC 旨在迅速实现巴基斯坦基本基础设施的现代化,从而在一定程度上促进其经济发展(Khan,2015 年)。中国向巴基斯坦投资 6200 万美元,中国和巴基斯坦政府强烈而热情地致力于推动中巴经济走廊的发展及其成功。
摘要:氧析出反应 (OER) 对基于水电解的未来能源系统至关重要。氧化铱是极具前景的催化剂,因为它们在酸性和氧化条件下具有耐腐蚀性。在催化剂/电极制备过程中,使用碱金属碱制备的高活性铱(氧)氢氧化物在高温(>350°C)下会转变为低活性金红石 IrO 2。根据碱金属的残留量,我们现在表明这种转变可以产生金红石 IrO 2 或纳米晶态锂插层 IrO x 。虽然转变为金红石会导致活性较差,但锂插层 IrO x 具有与高活性非晶态材料相当的活性和更好的稳定性,尽管在 500°C 下处理。这种高活性纳米晶态的铱酸锂可以更耐受生产 PEM 膜的工业程序,并提供一种稳定非晶态铱(氧)氢氧化物中大量氧化还原活性位点的方法。 ■ 简介
伦敦,HA7 4LP,英国 摘要 采用多丝电弧增材制造 (MWAAM) 成功制备了 TC4/NiTi 多材料结构件。本文展示了仿生梯度夹层构建策略下 TC4/NiTi 多材料结构件的界面特征和力学性能。结果表明,获得了极限抗压强度为 (1533.33±26 MPa) 的 MWAAM TC4/NiTi 梯度异质合金。优异的压缩行为主要归因于梯度区的良好过渡,EBSD 分析表明梯度区的晶粒尺寸细小,差异施密特因子值较小。随着 NiTi 含量的增加,从 TC4 区到 NiTi 区的相组成依次演变为:α-Ti + β-Ti → α-Ti + NiTi 2 → NiTi 2 → NiTi 2 + NiTi → NiTi + Ni 3 Ti。梯度异质合金的显微硬度范围为310±8~230±11 HV,其中区域B处硬度最高,为669.6±12 HV,这是由于NiTi 2 强化相的析出所致;试样的极限断裂应力为1533.33±26 MPa,应变为28.3±6%;在10次加载/卸载循环压缩试验过程中,MWAAM TC4/NiTi梯度异质合金的不可回复应变逐渐趋近于2.75%。
为了促进从碳能源依赖型社会向可持续社会的转变,传统的工程策略应进行范式转变,因为它们受到与内在材料特性相关的限制。从理论角度来看,氧析出反应(OER)的自旋相关特性揭示了自旋极化策略在提高电化学(EC)反应性能方面的潜力。手性诱导自旋选择性(CISS)现象因其在实现新突破方面的潜在效用而引起了前所未有的关注。本文从旨在提高自旋相关OER效率的实验结果开始,重点关注基于CISS现象的EC系统。通过各种分析方法验证了自旋极化对EC系统的适用性,以阐明自旋相关反应途径的理论基础和机制。然后将讨论扩展到基于CISS效应的光电化学系统中有效的自旋控制策略。本文探讨了自旋态控制对动力学和热力学方面的影响,还讨论了 CISS 现象引起的自旋极化对自旋相关 OER 的影响。最后,讨论了增强自旋相关氧化还原系统性能的未来方向,包括扩展到各种化学反应和开发具有自旋控制能力的材料。
摘要:由于铜基合金具有高热导率,而镍基高温合金具有高高温抗拉强度,因此铜基弥散强化合金与镍基高温合金的连接在液体火箭发动机应用中引起了越来越多的关注。然而,这种接头在通过液态过程连接时可能会开裂,从而导致零件失效。在本文中,将 15–95 wt.% GRCop42 成分与 Inconel 625 合金化,并对其进行了表征,以更好地了解开裂的根本原因。结果表明,在对应于 30–95 wt.% GRCop42 的成分中,贫铜液体和富铜液体之间缺乏可混溶性。观察到两种不同的形态,并通过使用 CALPHAD 进行解释; 30–50 wt.% GRCop42 处为铜缺乏的枝晶,枝晶间区域为富铜,60–95 wt.% GRCop42 处为铜缺乏的球体,周围为富铜基质。相分析表明,脆性金属间相在 60–95 wt.% GRCop42 铜缺乏区域析出。本文提出了三种开裂机制,为避免镍基高温合金与铜基弥散强化合金接头缺陷提供指导。
摘要:电子束定向能量沉积(EB-DED)是一种很有前途的制备大尺寸、完全致密和近净成形金属部件的制造工艺。然而,对于钛合金的 EB-DED 工艺了解有限。在本研究中,通过 EB-DED 制备了近 α 高温钛合金 Ti60(Ti-5.8Al-4Sn-4Zr-0.7Nb-1.5Ta-0.4Si)。研究了制备的合金的化学成分、微观结构、拉伸性能(室温和 600 ◦ C)和蠕变行为,并将其与传统锻造层状和双峰对应物进行了比较。结果表明,Al 和 Sn 的平均蒸发损失分别为 10.28% 和 5.01%。成品合金的微观结构以粗柱状晶粒、层状 α 和在 α / β 界面处析出的椭圆硅化物为特征。在拉伸性能方面,无论是在室温还是在 600 ◦ C 下,垂直试样的强度都低于水平试样,但延展性却高于水平试样。此外,在 600 ◦ C 和 150 MPa 条件下测量的 EB-DED Ti60 合金在 100 小时的拉伸蠕变应变在原有和沉积后的 STA 条件下小于 0.15%,符合变形 Ti60 合金的标准要求。EB-DED Ti60 合金的抗蠕变性能优于其变形双峰合金。
摘要:对采用选择性激光熔化 (SLM) 技术制备的 Inconel 718 (IN718) 高温合金样品进行不同的加热循环,并研究其微观结构特征。选定的加热速率范围从 10 ◦ C / min 到 400 ◦ C / s,代表焊接增材制造试件热影响区 (HAZ) 中的不同区域。采用差示热分析 (DTA)、高分辨率膨胀仪以及激光共聚焦和电子显微镜相结合的方法研究了第二相的析出和溶解以及微观结构特征。为此,从与支撑接触的底部到顶表面研究了增材制造试件的微观结构。结果表明,在高加热速率下,γ”和δ相的溶解延迟并转移到更高的温度下。微观结构分析表明,枝晶间区域的 Laves 相在靠近样品表面的特定区域分解。确定这些区域的厚度和面积分数与施加的加热速率成反比。提出了一种可能的机制,该机制基于加热速率对枝晶间区域和枝晶核心中 Nb 扩散的影响,以解释观察到的微观结构变化。
高强度铝合金,包括 2xxx、6xxx 和 7xxx 合金,在高温下强度较低,这是因为热暴露后沉淀物会粗化[7 和 9]。最近的研究报告称,由于 α-Al(MnFe)Si 弥散体的析出,3xxx 合金在室温和高温下均具有优异的力学性能[10 和 13]。α-Al(MnFe)Si 弥散体与基体部分共格,具有立方晶体结构[10,14]。有趣的是,α-Al(MnFe)Si 弥散体在 300℃ 时具有热稳定性,这提高了高温强度和抗蠕变性[12,13]。曾尝试通过添加合金元素和/或各种热处理来优化α-Al(MnFe)Si弥散体的特性,以期改善3xxx合金的高温力学性能[11、13、15和19]。刘和陈[12]报道,在375℃下加热48小时的一步法热处理促使大量α-Al(MnFe)Si弥散体析出,从而在300℃下实现3004合金的峰值弥散强化。后来,发现与在375℃下加热48小时的一步法热处理相比,在250℃下加热24小时和在375℃下加热48小时的两步法热处理可显著改善弥散体的特性以及300℃下的屈服强度和抗蠕变性[17]。李等人。 [13]研究了添加不同量的Si和Mg对3xxx合金组织和高温性能的影响,发现当Si含量为0.25wt.%、Mg含量为1.0wt.%时,α-Al(MnFe)Si弥散相的高温强化效果最好。刘等[16]研究发现,在Al-Mn-Mg 3004合金中添加0.3wt.%Mo可细化弥散相,并提高其在350℃以下的热稳定性。由于Fe、Si和Mn等合金元素在凝固过程中发生偏析,在沉淀热处理过程中,枝晶间区域总会形成无弥散相区(DFZ),从而降低弥散相的体积分数,降低合金的高温性能[11e13]。因此,在采用弥散强化时,必须尽量减少 DFZ。添加具有负偏析(ko > 1)的元素是减少 DFZ 数量的有效方法。据报道,Mo 可以最大限度地减少不同 Al 合金中 DFZ 的形成 [16,20,21],从而使弥散体的体积分数较大且分布均匀,最终获得更优的高温性能。尽管之前的研究报告显示弥散体强化可以使 Ale Mne Mg 3xxx 合金的高温性能得到显著改善,但大多数研究都局限于铸锭。事实上,工业工程零件通常需要材料经历大的塑性变形才能满足特殊的形状和性能要求。此外,热轧或挤压也能消除铸造缺陷,如夹渣、孔隙等,进一步改善材料性能[22e25]。张等[26]研究发现,室温预轧显著促进了纳米弥散相的形核,增加了Al-Mn-Si合金中弥散相的数量密度。但室温变形会增加开裂的风险,从而增加制造难度[27]。因此,有必要研究热变形工艺对弥散相组织及其相关力学性能的影响。
摘要:以电催化为基础的能量生产、转化和储存,主要借助于氧析出反应 (OER),在碱性水电解槽 (AWE) 和燃料电池中起着至关重要的作用。然而,缺乏高效且成本合理的催化剂材料来克服 OER 缓慢的电化学动力学,是重大障碍之一。在此,我们报道了一种在 H 2 S 存在下使用低温退火快速简便地合成双相硫化镍 (Ni-硫化物) 的气相沉积方法,并证明它是一种有效的 OER 催化剂,可解决电化学动力学缓慢的问题。双相 Ni-硫化物结构由密集堆积的 10 − 50 μ m 微晶组成,具有 40 − 50 个独立的双相层,例如 NiS 和 Ni 7 S 6 。作为电催化剂,双相镍硫化物表现出优异的 OER 活性,在过电位 (η 10 ) 为 0.29 V 时电流密度达到 10 mA/cm 2,并且在 50 小时内表现出优异的电化学稳定性。此外,镍硫化物在碱性条件下表现出相当强的电化学稳定性,并在过程中形成具有 OER 活性的镍氧化物/氢氧化物。采用节能合成方法,制备出独特的双相镍硫化物晶体纳米设计,为高效电催化剂组的可控合成开辟了新途径,以实现长期稳定的电化学催化活性。