课程大纲 逻辑:命题、否定、析取和合取、蕴涵和等价、真值表、谓词、量词、推理规则、证明方法。集合论:集合论中的定义和简单证明、集合的归纳定义和归纳证明、包含和排除原理、关系、关系的图形表示、关系的性质、等价关系和划分、偏序、线性和有序集。函数:映射、单射和全射、函数组合、反函数、特殊函数、递归函数理论、Z 变换。初等组合学:计数技术、鸽巢原理、递归关系、生成函数。图论:图论元素、欧拉图、汉密尔顿路径、树、树遍历、生成树。
人类智力的重要方面是能够用更简单的思想构成日益复杂的概念的能力,从而可以快速学习和适应知识。在本文中,我们表明基于能量的模型可以通过直接组合概率分布来表现出这种能力。组合分布的样品对应于概念的组成。例如,给出一个用于笑脸图像的分布,另一个用于男性面孔,我们可以将它们结合起来以产生微笑的男性脸。这使我们能够生成同时满足概念结合,析取和否定的自然图像。我们在自然面和合成3D场景图像的Celeba数据集上评估模型的组成生成能力。我们展示了模型的独特功能的广度,例如能够不断学习并结合新概念或推断图像概念属性的组成。
大量具有重大社会、经济和科学意义的现实问题都可以表示为组合优化任务。组合优化方面的进步使得运输系统、供应链、资源管理等更加高效 [1、2、3、4、5]。在本文中,我们考虑经典的最大 2-可满足性(MAX-2-SAT)问题 [6],该问题在调度或资源分配任务中普遍存在,这只是其中的一些应用 [7]。假设给定一组 N 个二进制变量 x = (x1, x2, ..., xN) 和一组 C 个约束(或子句),每个子句有两个变量,它们形成布尔公式 F(x)。我们的目标是为每个变量 xi 分配一个二进制值,使得最大数量的子句得到满足。我们考虑的布尔公式 F(x) 采用合取范式,由子句的合取(逻辑与)组成,其中每个子句都是文字的析取(逻辑或)。例如,公式
摘要分为三个部分。第一部分介绍了地质统计学中开发的概率模型,用于描述空间中分布的自然变量的变异性、估计测量点之外的值、建立考虑空间变异性的数值模型以及表征数据和数值模型的不确定性。它涵盖了在 Georges Matheron 的领导下在 20 世纪下半叶发展起来的整个地质统计学:结构分析(变差函数的计算和建模)、线性估计(克里金法)、非平稳模型、多变量方法、支持变化和非线性方法(析取克里金法)、条件模拟、缩放效应和逆问题。通过理论和实践两个方面的阐述,对不同的地质统计方法进行了全面的阐述。介绍了实际应用,例如英吉利海峡隧道的地质构造建模以及预测与现实之间的比较。
霍尔逻辑提供了一种面向语法的程序正确性推理方法,并且已被证明在经典和概率程序的验证中非常有效。现有的量子霍尔逻辑提案要么缺乏完整性,要么仅支持量子变量,从而限制了它们的实际应用能力。在本文中,我们针对一种涉及经典和量子变量的简单 while 语言提出了一种量子霍尔逻辑。对于用该语言编写的量子程序的部分正确性和完全正确性,证明了其合理性和相对完整性。值得注意的是,由于对经典量子态和相应断言有了新的定义,该逻辑系统非常简单,与用于经典程序的传统霍尔逻辑相似。此外,为了简化实际应用中的推理,提供了辅助证明规则,支持在断言的经典部分引入析取和量词,在量子部分引入超算子应用和叠加。最后,对一系列实用量子算法,特别是Shor因式分解的整体算法进行了形式验证,以证明该逻辑的有效性。
《皇家学会汇刊 B》,377 (1844),20200529。Pitt, B.、Ferrigno, S.、Cantlon, JF、Casasanto, D.、Gibson, E.、Piantadosi, S. (2021)。土著文化中的数字、大小和时间的空间概念。科学进展,7(33)。 Ferrigno, S.、Huang, Y. 和 Cantlon, JF, (2021)。非人类的析取三段论。心理科学。 Ferrigno, S.、Cheyette, S.、Dedhe, A.、Piantadosi, S. 和 Cantlon, JF (2020)。顺序处理的简单模型无法解释中心嵌入的概括。科学进展,6(26)。坎特伦,JF (2020)。发育神经科学中严谨与现实的平衡。《神经影像》,216,116464。Ferrigno, S.、Cheyette, SJ、Piantadosi, ST 和 Cantlon, JF (2020)。猴子、儿童、美国成年人和亚马逊原住民的递归序列生成。《科学进展》,6(26)。Gruber 等人 (2020)。心理科学领域女性的未来。《心理科学观点》,16 (3),483-
不确定性是生活的固有部分;大多数事件、事务和问题都是不确定的。行为科学的一个关键问题是大脑如何应对不确定的信息。量子概率论提供了一套推理原则,这些原则与某些情况下心理过程的直觉非常吻合:推理似乎是情境化的,心理状态因先前的判断而改变,或者不同可能性之间存在干扰。我们鼓励在认知及其主要特征中使用量子理论。对于每个特征,我们都会回顾相关的量子认知模型和实证支持。量子认知模型的范围包括决策中的谬误(例如合取谬误或析取效应)、问题顺序效应、概念组合、证据积累、感知、记忆中的过度/欠分配效应等。量子模型通常将以前以启发式术语表达的心理学思想形式化,允许对以前不同的发现进行统一解释,并导致了几个令人惊讶的新预测。我们还以批判的眼光看待量子模型,并考虑它们的一些缺点以及进一步发展的问题。
在我的演讲中,我想根据《逻辑哲学论》区分两种从基本命题中构造真值函数的方法。第一种方法是“操作方法”,包括连续应用 N 运算符,这是 TLP 6 中给出的“命题的一般形式”的核心。但是,还有第二种方法,可以称为“组合方法”,也出现在《逻辑哲学论》中,但不太为人所知。所有真值函数都可以通过两步程序实现,该程序使用特定的逻辑哲学论真值论证、真值可能性和真值条件架构。对于给定数量的 n 个基本命题(作为真值论证),第一步将形成这 n 个基本命题及其否定的所有可能的连接。例如n= 2,其中 p 和 q 是基本数,这给出了 4 种可能的组合 p.q、~p.q、p.~q 和 ~p.~q(真值可能性)。在第二步中,现在构造所有可能的子集,这些可能性通过析取组合起来。这样就可以构造所有真值函数,这种方法等同于通过 N 运算符构造。从数学的角度来看,这个过程等同于 n 个生成器的“自由布尔代数”,生成 2 𝑛 所谓的代数“原子”,最后生成 22 𝑛 代数元素。这个自由布尔代数反过来同构于命题逻辑的 Lindenbaum-Tarski 代数。在我的演讲中,我想通过讨论这种结构的属性来解释(有限命题逻辑部分)Tractarian Logic,并展示一些与赫兹配置空间(和玻尔兹曼相空间)的联系,这些联系可用于更好地理解维特根斯坦的逻辑空间。最后,我想表明,基于这种观点,可以给出基本命题的明示例子。
量子物理学中一个令人费解的问题是,在两个状态 | φ ⟩ 和 | ψ ⟩ 的量子叠加态 α | φ ⟩ + β | ψ ⟩ 中,是否存在状态 | φ ⟩ 和状态 | ψ ⟩ 或者状态 | φ ⟩ 或者状态 | ψ ⟩ 。事实上,当我们建立这样的叠加态时,也就是当我们准备它时,我们需要有 | φ ⟩ 和 | ψ ⟩ ,但是当我们使用这个状态时,也就是当我们测量它时,我们得到 | φ ⟩ 或 | ψ ⟩ 。因此,当我们建立这种叠加态时,它类似于合取,但当我们使用它时,它类似于析取。这种叠加的构建和使用方式之间的差异让人想起 Prior 的 tonk 等非和谐连接词的自然演绎规则。在本文中,我们捍卫了以下论点:这些非和谐连接词模拟了量子测量中出现的信息擦除、不可逆性和不确定性,而和谐连接词模拟了信息保存、可逆性和确定性。更具体地说,在讨论了和谐和非和谐演绎规则的概念之后(第 2 节),我们引入了一种具有逻辑联结词 ⊙(读作:“sup”,代表“叠加”)的直觉命题逻辑,该逻辑具有非和谐演绎规则,我们为这种逻辑引入了一种证明术语语言,即 ⊙ 演算(读作:“sup-演算”),并且我们证明了它的主要性质:主题归约、证明归约的终止、引入性质和部分合流(第 3 节)。这些证明大多使用标准技术,但有一些特殊性,以适应这种演算。然后,我们扩展这种演算,引入标量来量化一个证明归约成另一个证明的倾向(第 4 节),并表明这种证明语言包含量子编程语言的核心(第 5 节)。请注意,带有 ⊙ 的直觉命题逻辑不是推理量子程序的逻辑。它是一种以量子程序类型为命题的逻辑。