图 1:使用国际 10-20 系统从 (a) 矢状面和 (b) 轴平面 (c) 头皮角度看到的 64 个电极配置表示。注意:A= 耳垂,C = 中央,Pg = 鼻咽,P = 顶叶,F = 额叶,Fp = 额极和 O = 枕叶。
现在你的大脑至少有两条信息:1. 狗叫的声音,2. 你面前的狗的图片。颞叶和枕叶以及大脑的许多其他部分会共同识别动物是狗。大脑的其他部分会提供更多信息,帮助你识别你是否认识这只狗,并了解狗是高兴、悲伤还是生气。最后,你的额叶会帮助你
大脑区域 1:大脑 - 大脑叶皮质及其功能(额叶、顶叶、颞叶、枕叶和岛叶) - 大脑对身体运动和感觉知觉的划分(中央前回和中央后回)。 - 大脑与语言(布罗卡区和韦尼克区以及失语症 - 大脑与睡眠 - 大脑与记忆 - 大脑核与运动功能 - 大脑核与情绪(边缘系统)
结果:TMT A 部分期间,右额叶、左中央、左枕叶、左下额叶、右颞中叶、右后颞叶和中顶叶区 delta 波的脑电图功率水平显著高于静息态期间(P < .05),左后颞叶区 alpha 波的脑电图功率水平显著低于静息态期间(P = .006),左顶叶区(P = .05)和左枕叶区(P = .002)高 γ 波的脑电图功率水平显著低于静息态期间(P = .041),左额极区、右额叶和右下额叶区低 γ 波的脑电图功率水平显著高于静息态期间(P < .05)。在集中注意力任务中,δ波的功率水平增加,α波的功率水平降低;在交替注意力任务中,β波和γ波的功率水平均增加。δ波与整个大脑有关,α波和高γ波与左后叶有关,β波和低γ波与两个额叶有关。
cSAH:凸面蛛网膜下腔出血;F:额叶;P:顶叶;O:枕叶;T:颞叶;To.:全部;DWI:扩散加权成像;MRI:磁共振成像;A:前区;P:后区;PH:实质出血;SDH:硬膜下出血;IVH:脑室内出血;PRES:后部可逆性脑病综合征;R:比率;RCVS:可逆性脑血管收缩
摘要:耳聋对时间处理可能产生的影响这一问题仍未得到解答。基于行为测量的不同发现显示出相互矛盾的结果。本研究的目的是通过使用功能性近红外光谱 (fNIRS) 技术分析时间估计背后的大脑活动,该技术可以检查额叶、中央和枕叶皮质区域。共招募了 37 名参与者(19 名聋人)。实验任务包括处理道路场景以确定驾驶员是否有时间安全执行驾驶任务,例如超车。道路场景以动画形式呈现,或以 3 张静态图像序列呈现,显示情况的开始、中间点和结束。后一种呈现需要计时机制来估计样本之间的时间以评估车速。结果显示聋人的额叶区域活动更活跃,这表明需要更多的认知努力来处理这些场景。一些研究表明,中脑区域与计时有关,在聋哑人士估计时间流逝时,静态呈现尤其会激活中脑区域。对枕叶区域的探索没有得出任何结论性结论。我们对额叶和中脑区域的研究结果鼓励进一步研究时间处理的神经基础及其与听觉能力的联系。
摘要:抑制控制是一种抑制反应的认知过程。它用于日常活动,例如驾驶摩托车、驾驶汽车和玩游戏。这个过程的影响可以与现实世界中的红灯进行比较。在本研究中,我们使用相位滞后指数和试验间一致性 (ITC) 研究了人类抑制控制下的大脑连接。人类大脑连接可以更准确地表示功能神经网络。脑电图 (EEG) 的结果(数据集是使用听觉停止信号任务从十二名健康受试者在左手和右手抑制期间生成的)表明,大脑额叶和颞叶的 delta (1-4 Hz) 和 theta (4-7 Hz) 波段功率的试验间一致性增加。这些 EEG delta 和 theta 波段活动神经标记与人类额叶的抑制有关。此外,通过视觉刺激,枕叶的 delta-theta 和 alpha(8-12 Hz)波段功率的试验间一致性有所增加。此外,与颞叶和枕叶相比,在抑制控制下,额叶 F3-F4 通道之间的大脑连接性最高。额叶中更高的 EEG 一致性和相位滞后指数与人类反应抑制有关。这些发现揭示了理解大脑连接的神经网络和人类反应抑制过程中的潜在机制的新见解。
摘要 注意力缺陷多动障碍 (ADHD) 是一种常见的神经发育障碍,除了注意力不集中、活动过度或冲动之外,还使儿童难以处理面部情绪,从而与同龄人互动。在这里,我们通过锁相值 (PLV) 方法分析了患有这种疾病的儿童的神经网络。具体来说,我们确定了 22 名健康男孩和 22 名患有 ADHD 的男孩的 62 个 EEG 通道之间的相位同步水平,同时记录了观察愤怒、快乐、中性和悲伤面部情绪。我们基于伽马子带构建了神经网络,根据以前的研究,该子带对情绪刺激的反应最高。我们发现 ADHD 组的额叶和枕叶的功能连接显著 ( P 值 \ 0.01) 高于健康组。这些脑叶的功能连接越多,表明这些脑区神经元之间的相位同步性越高,这说明 ADHD 组大脑情绪处理中心存在一些问题。ADHD 组这些脑叶的最短路径长度也显著高于健康组(P 值 \ 0.01)。这一结果表明 ADHD 神经元网络的枕叶和额叶(分别负责大脑中的视觉和情绪处理)中信息传递和分离的效率较低。我们希望我们的方法能够帮助利用网络科学方法进一步深入了解 ADHD。
先前对人类受试者的研究报告称,当优先进行视觉处理时,前庭皮质的核心区域顶叶岛叶前庭皮质 (PIVC) 会受到抑制。然而,仍不清楚大脑中的哪些网络调节了这种 PIVC 抑制。基于先前的研究结果,表明 PIVC 的抑制受到视觉注意的强烈影响,我们在此研究了顶叶枕叶皮质中的注意力网络是否会调节 PIVC 的抑制。利用一组女性和男性受试者的弥散加权和静息态 fMRI,我们发现了 PIVC 和后顶叶皮层 (PPC)(皮层注意网络的主要脑区)之间的结构和功能连接。然后我们通过重复经颅磁刺激 (rTMS) 暂时抑制 PPC,并假设 PPC 对 PIVC 的调节作用会减弱;因此,PIVC 受到的抑制会减少。受试者在 rTMS 后立即进行视觉注意追踪任务,并使用 fMRI 测量注意追踪过程中 PIVC 的抑制。结果显示,与假性 rTMS 相比,注意追踪过程中 PIVC 的抑制不太明显。我们还研究了抑制性 rTMS 对枕叶皮质的影响,发现与假性 rTMS 或 PPC 上的 rTMS 相比,视觉前庭后岛叶皮质区域在注意追踪过程中的激活程度较低。总之,这些结果表明顶枕皮质中的注意力网络在注意视觉处理过程中调节前庭皮质核心区域的活动。