安第斯果实在不同的发展阶段包括物种,以及其国家潜在的重要性。他们的种植通常没有技术的异质地面。这些水果的效率和竞争力的提高取决于耕种分类单元和相关物种的种质收集的发展,从而导致品种克服了限制概率。在短期内,品种优惠可以基于以参与性方法和杰出个人克隆的当地人口的选择过程。在中长期中,富含野生相对物种属性的广泛遗传基础的创造是关键。这样,使用组织培养的选择过程和大量克隆来传播不同的克隆以避免脆弱性。到目前为止,在哥伦比亚,已经组装了几种安第斯果实的集合,并表征了遗传变异性,并且已经实现了一些繁殖活动。这些是基于杂交杂交以传递果实炭疽病的耐药性,这些是lulo驯化,预料和繁殖和番茄树的预邻二。这种经验允许开发有关改进材料的遗传资源产生的提案,作为基于遗传学的生产能力的有效方法。
农林业可以通过减少4.1 mtco 2 e到2030的雄心将温室气体(GHG)排放降低32%。也有望为种植150亿棵树木的全国目标做出贡献,恢复了1,060万公顷的退化土地,其中农林业被分配了300万公顷,到2032年,将树木覆盖至30%(肯尼亚政府,2023年)。大规模实施农林业可以提高土壤的生育能力,作物产量增强了水周期,包括提供多种产品,从而改善农民生计和食品和食品和养分安全,并有助于气候应变。关于这些野心的一个重大挑战是监视和报告农林业的潜力。农林业系统很复杂,因为树木所在的树木所在以及相关的管理实践的土地使用。这种复杂性限制了将农林业限制在许多国家的国家温室气体清单中,从而影响了温室气体排放的两个基本方面。首先,是如何整合农业条约对现有农业,林业和其他土地使用部门的贡献的挑战。2020)。第二,在不同的农林业系统下缺乏碳库存和股票变化的数据,这限制了扩大农林业所需的财务和技术支持的访问(Rosenstock等人。2019)。数据的缺乏归因于缺乏对碳库存的量化(包括果树)的可靠方法。
1 西班牙穆尔西亚,埃斯皮纳多大学园区,CEBAS-CSIC(安全教育与应用生物学中心-高等科学技术研究委员会)植物育种系水果生物技术组,E-30100; mmartin@cebas.csic(MM-V.); cperez@cebas.csic.es (CP-C.); nalbur@cebas.csic.es (NA) 2 伊朗设拉子大学农学院园艺科学系,设拉子 7144165186; sama_rahimi@yahoo.com (社交媒体链接) smemahdavi@gmail.com (SMEM) 3 水果育种组,植物育种系,CEBAS-CSIC(教育、应用生物学和安全中心-高等科学技术研究委员会),埃斯皮纳多大学校区,E-30100 穆尔西亚,西班牙; gortuno@cebas.csic.es(GO-H.); jasalazar@cebas.csic.es (JAS) 4 匈牙利农业与生命科学大学水果种植研究中心,匈牙利布达佩斯 1223; bujdoso.geza@uni-mate.hu * 通信地址:pmartinez@cebas.csic.es;电话:+34-968-396-200 † 这些作者对这项工作做出了同等贡献。
自从时间黎明以来,使用植物和植物产品在各种疾病中的治疗一直存在于人类中,这些植物的潜力是如此巨大,以至于由于抗生素耐药性的增加,不断寻找其隐藏的宝藏更为重要。这项研究旨在确定针对某些选定的临床病原体的乳木果树(叶片帕拉多氏菌)提取物的抗菌活性。使用五种致病性微生物,即蜡状芽孢杆菌,铜绿假单胞菌,白色念珠菌,大肠杆菌和沙门氏菌Typhi用于评估提取物的功效。使用Mueller Hinton琼脂,通过琼脂井扩散法对提取物的抗菌作用进行了检查。所使用的对照是阿莫西林抗生素。结果表明,树皮和粗叶提取物对每个临床分离株都有抗菌作用。粗叶提取物对所有测试的微生物的活性最低,而树皮提取物的活性最高。树皮提取物记录了15.5 mm的最高抑制区。该研究建议将乳木果树提取物作为对测试微生物引起的感染的抗生素物质的潜在来源。关键词:乳木果树,叶提取物,树皮提取物,原油提取物,病原体。引言越来越多的耐药病原体需要开发新的制剂来应对这种威胁。植物是合成用于防御微生物和食草动物的生物活性化合物的储层。由于它们的相对成本效益和环保性,因此可以利用这些化合物在植物中的潜力。植物传统上是
CIFOR-ICRAF国际林业研究中心(CIFOR)和世界农林业(ICRAF)设想了一个更公平的世界,从旱地到潮湿的热带地区,所有景观中的树木都可以增强所有人的环境和福祉。CIFOR和ICRAF是CGIAR研究中心。cifor-icraf.org
1位PISA PISA大学转化研究和新技术系;比萨比桑大学医院2号医学肿瘤学单位; 3罗马萨皮恩扎大学实验医学系; 4威尼托肿瘤学研究所IOV IOV -IRCCS,PADUA; 5 IRCCS基金会国家癌症研究所的医学肿瘤学系; 6医学肿瘤科,综合癌症中心,罗马大学多克林大学基金会Agostino Gemelli Irccs; 7医学肿瘤科,罗马天主教大学的圣心; 8 Ravenna Ausl Romagna的Ravenna医院肿瘤科; 9罗马大学校园Bio-Medico大学医学肿瘤学系; 10医学肿瘤科,IRCCS Romagna肿瘤研究研究所(IRST)“ Dino Amadori”,Meldola; 11临床肿瘤学,临床和分子科学系,马尔马尔市理工大学,托莱特·迪安科纳,安科纳; 12临床肿瘤学,Ancona Marche的医院大学; 13 Cagliari Cagliari大学医院医学肿瘤学; 14 Cagliari Cagliari大学医学肿瘤学; 15都灵大学医学院医学肿瘤学系,Candiolo癌症研究所,FPO,IRCCS,Candiolo,都灵; 16 IRCCS Humanitas Research Hospital,Humanitas Cancer Center,Rozzano,Rozzano,米兰,意大利,医学肿瘤学和血液学部门1位PISA PISA大学转化研究和新技术系;比萨比桑大学医院2号医学肿瘤学单位; 3罗马萨皮恩扎大学实验医学系; 4威尼托肿瘤学研究所IOV IOV -IRCCS,PADUA; 5 IRCCS基金会国家癌症研究所的医学肿瘤学系; 6医学肿瘤科,综合癌症中心,罗马大学多克林大学基金会Agostino Gemelli Irccs; 7医学肿瘤科,罗马天主教大学的圣心; 8 Ravenna Ausl Romagna的Ravenna医院肿瘤科; 9罗马大学校园Bio-Medico大学医学肿瘤学系; 10医学肿瘤科,IRCCS Romagna肿瘤研究研究所(IRST)“ Dino Amadori”,Meldola; 11临床肿瘤学,临床和分子科学系,马尔马尔市理工大学,托莱特·迪安科纳,安科纳; 12临床肿瘤学,Ancona Marche的医院大学; 13 Cagliari Cagliari大学医院医学肿瘤学; 14 Cagliari Cagliari大学医学肿瘤学; 15都灵大学医学院医学肿瘤学系,Candiolo癌症研究所,FPO,IRCCS,Candiolo,都灵; 16 IRCCS Humanitas Research Hospital,Humanitas Cancer Center,Rozzano,Rozzano,米兰,意大利,医学肿瘤学和血液学部门
梨(pyrus spp。)是属于家庭酒渣鼻的最重要的可食用水果之一。DNA标记,分子遗传学和基因组学以及梨的分子繁殖取得了巨大进展。可靠的DNA标记物的发展,例如简单的序列重复和单核苷酸多态性,已允许梨饰的DNA分析,评估梨物种内的遗传多样性以及梨种类之间的系统发育关系的分析。参考遗传链接图和全基因组分子标记物已使实用的标记辅助选择可以抵抗黑点和/或梨sc疮疾病,自我兼容,收获时间和日本梨育种计划中的果皮。分子育种已显示出实用育种的选择效率的三倍以上。此外,采用两种基于基因组学的新方法(基因组范围的关联研究和基因组选择)的育种计划正在进行水果质量和质地,以及用于育种的定量特征。的共线性和功能同步,并已被用来有效预测相关物种中感兴趣基因的功能并开发选择标记。
东非项目团队的气候变化和改编的水果树要感谢澳大利亚政府通过澳大利亚国际农业研究中心(ACIAR)为该项目提供资金。该项目由世界农林业(ICRAF)领导,我们感谢ICRAFS领导力,金融和项目管理部门的出色支持,以支持其项目管理。我们感谢项目合作伙伴在成功实施这些活动方面的贡献,尤其是Jomo Kenyatta农业技术大学(JKUAT)和卢旺达农业和动物资源发展(RAB)。,我们要感谢肯尼亚和卢旺达的国家政府的帮助,并通过在各自的各部委中建立气候变化码头和政策来使事情变得更容易。我们还感谢肯尼亚的Makueni和Kiambu县的县政府官员以及卢旺达Bugesera区的领导。我们还要感谢当地的扩展代理。该项目的团队与政府各级合作非常出色。我们非常感谢Aciar的林业研究计划经理Nora Devoe博士的领导和奉献精神,从设计到实施以及项目审查的终结,这导致了进行Endline研究的建议。ACIAR非洲地区经理Leah Ndungu博士对她的支持,包括与团队的定期沟通以及与同事肯尼迪·奥萨诺(Kennedy Osano)一起进行实地访问,他们的投入非常有价值。我们希望对所有合作伙伴表示感谢,这特别是Kiambu县执行委员会成员(CECM),环境和气候变化david Kuria,农作物和灌溉-MS Anne Koimburi和亚县农业官员以及Kiambu和Gatundu Southundu Southundu Southundu Southundu Southundu south-Jane Waihenya and Rachi和Rachi。此外,前Makueni CECM环境变化和气候变化,Makueni County Forester-Damaris Mwikali和Joseph Mbithe Biovision Kenya。最后,我们的主要大使和改变代理人 - 农民利用时间,当地知识,农场和树木的项目活动以及所有积极参与我们培训和相关意识活动的利益相关者。尽管该项目的持续时间很短,但我们希望从培训和知识中收集的势头将使农民在种植树木和果实养殖方面更好。这最终应该导致更好地缓解气候变化,更有弹性和有利可图的生计以及较少退化的景观。
三十多年来,农杆菌介导的转化技术一直用于树果作物的基因工程。尽管在草本植物和一年生植物的水平上利用这项技术仍然存在许多障碍,但该领域已经取得了很大进展(Song 等人,2019 年)。在本研究主题的第二卷中,有论文描述了不同研究小组正在采取的方法,以促进难处理的树种的遗传转化,并在更基本的层面上了解 T-DNA 插入宿主细胞基因组的机制。在一项优雅的研究中,Gelvin 等人研究了 T 环的形成作为理解 T-DNA 整合的代理。在这项工作中,从转基因植物本氏烟或拟南芥中形成的 T 环中详细描述了与 LB-RB 连接相关的区域。结果表明,T 环中的 RB-LB 连接类似于 T-DNA 和发生整合的植物 DNA 之间的连接。相似之处包括:与 RB 相比,LB 处的缺失频率更高且序列变化更为广泛;连接位点存在微同源性;存在来自农杆菌或植物基因组的填充 DNA;多个 T-DNA 拷贝的多联体组织,其中 RB-RB 和 LB-LB 连接比 RB-LB 连接更常见。此外,作者还表明,T 环的形成即使在农杆菌 VirD2 基因中没有 Ku80 和 w 突变的情况下也能进行,其影响与对 T-DNA 整合的影响相似。根据他们的数据,作者提出 T 环的形成可用于研究 T-DNA 整合到宿主基因组的所有方面。大多数关于柑橘转化的已发表研究都仅使用了少数相对容易转化的品种的材料(Song 等人,2021 年)。 TAMU 的 Mandadi 团队(Dominguez 等人)开发了一种方法,可以促进 14 种柑橘品种的转化。他们通过在转化方案中使用的培养基中添加亚精胺和硫辛酸等补充剂,并使用含有额外 VirG 和 VirE 基因拷贝的辅助质粒 pCH32 来实现这一点。