塑料废物在环境中的积累带来了重大的生态和健康风险。本研究评估了微生物群落降解各种塑料的有效性,包括低密度聚乙烯 (LDPE)、低线性密度聚乙烯 (LLDPE)、聚对苯二甲酸乙二醇酯 (PET) 和聚苯乙烯 (PS)。对五种微生物菌株进行了与塑料生物降解相关的酯酶和木质酶的定性酶测定。根据其成分的酶谱,组装了四种微生物群落,结合了细菌和真菌菌株,并评估了它们降解原始塑料和再生塑料的能力。结果表明,菌落 C2(枯草芽孢杆菌 RBM2、尖镰孢 RHM1 和链格孢 RHM4)和 C4(枯草芽孢杆菌 RBM2 和假单胞菌 REBP7)表现出最高的生物降解效率,尤其是在回收的 LDPE、原始 LLDPE 和回收的 PET 中实现了显著的重量损失。FTIR 分析进一步证实了生物降解,该分析揭示了处理后的塑料的化学成分和功能组的变化,表明微生物相互作用和降解。这项研究强调了微生物菌落 在解决塑料污染方面的潜力,高度强调了基于酶谱和塑料定植能力的战略菌落设计的重要性。这些有希望的结果表明,进一步优化微生物菌落可以为大规模塑料废物管理提供可行的解决方案。
AAA,腹主动脉瘤; ACR,白蛋白肌酐比率; ASCVD,动脉粥样硬化心血管疾病; CABG,冠状动脉旁路移植物; CKD,慢性肾脏疾病; DM,糖尿病; EGFR,估计的肾小球过滤率; FH,家族性高胆固醇血症; HIV,人类免疫缺陷病毒; IHD,缺血性心脏病; LDL-C,低密度脂蛋白胆固醇; Mi,心肌梗塞;垫,周围动脉疾病; PCI,经皮冠状动脉干预; PCSK9,普罗蛋白转化酶枯草蛋白/KEXIN类型9; SG-FRS,新加坡改装的Framingham风险评分; SLE,全身性红斑狼疮; TIA,短暂缺血性攻击AAA,腹主动脉瘤; ACR,白蛋白肌酐比率; ASCVD,动脉粥样硬化心血管疾病; CABG,冠状动脉旁路移植物; CKD,慢性肾脏疾病; DM,糖尿病; EGFR,估计的肾小球过滤率; FH,家族性高胆固醇血症; HIV,人类免疫缺陷病毒; IHD,缺血性心脏病; LDL-C,低密度脂蛋白胆固醇; Mi,心肌梗塞;垫,周围动脉疾病; PCI,经皮冠状动脉干预; PCSK9,普罗蛋白转化酶枯草蛋白/KEXIN类型9; SG-FRS,新加坡改装的Framingham风险评分; SLE,全身性红斑狼疮; TIA,短暂缺血性攻击
摘要:在Panax Notoginseng的连续种植中,根际土壤中的致病真菌增加并感染了Panax Notoginseng的根,导致产量降低。这是一个紧迫的问题,需要解决,以有效克服与Panax Notoginseng的连续种植相关的障碍。先前的研究表明,枯草芽孢杆菌抑制了Panax Notoginseng根际中的致病真菌,但抑制作用不稳定。因此,我们希望引入生物炭,以帮助枯草芽孢杆菌在土壤中定植。在实验中,对Panax Notoginseng种植了5年的田地进行了翻新,并同时混合了生物炭。将应用的生物炭量设置为四个水平(B0,10 kg·Hm -2; b1; b1,80 kg·Hm -2; b2; b2,110 kg·hm -2; b3,140 kg·hm -hm -hm -2)和二级生物杆菌的生物学剂,将三个水平设置为三个水平(C1,10 kg)。 2; C3,25 kg·Hm -2)。使用了完整的组合实验和空白对照组(CK)。实验结果表明,整体蛋白酶在门水平下降低了0.86%〜65.68%。基本肌cota增长-73.81%〜138.47%,而Mortierellomy-Cota增加了-51.27%〜403.20%。在属水平上,Mortierella升高-10.29%〜855.44%,镰刀菌降低了35.02%〜86.79%,而Ilyonectria则增加了-93.60%〜680.62%。镰刀菌主要引起急性细菌枯萎的根腐,而伊利诺克里亚主要会导致黄色腐烂。good_coverage指数均高于0.99。在不同的治疗方法下,香农指数增加-6.77%〜62.18%,CHAO1指数增加了-12.07%〜95.77%,Simpson指数增加了-7.31%〜14.98%,ACE指数增加了-11.75%〜96.75%〜96.12%。随机森林分析的结果表明,Ilyonectria,pyrenochaeta和Xenopolyscytalum是土壤中最重要的三种最重要的物种,弯曲曲霉的值分别为2.70、2.50和2.45。fusarium排名第五,其弯曲的值为2.28。实验结果表明,B2C2治疗对镰刀菌具有最佳的抑制作用,并且在B2C2处理下,Panax Notoginseng Rothosphere土壤中镰刀菌的相对丰度降低了86.79%。 B1C2治疗对伊利诺克里亚的抑制作用最佳,而在B1C2处理下,Panax Notoginseng Rothizosphere土壤中伊甘元的相对丰度降低了93.60%。因此,如果我们想用急性摩尔斯托尼亚卵巢根腐烂改善土壤,则应使用B2C2处理来改善土壤环境;如果我们想通过黄色腐烂疾病改善土壤,我们应该使用B1C2处理来改善土壤环境。
摘要:分支酸变位酶 (CM) 长期以来一直用作计算化学中基准测试新方法和工具的模型系统。尽管这些酶在文献中占有重要地位,但活化焓和熵在催化分支酸转化为预苯酸盐方面所起的作用程度仍有待商榷。了解这些参数是充分理解分支酸变位酶机制的关键。在本研究中,我们利用一系列温度下的 EVB/MD 自由能扰动计算,使我们能够从单功能枯草芽孢杆菌 CM 和铜绿假单胞菌的混杂酶异分支酸丙酮酸裂解酶催化的反应的活化自由能的阿伦尼乌斯图中提取活化焓和熵。与未催化反应相比,我们的结果表明,两种酶催化反应的活化焓均显著降低,而对活化熵的影响相对较小,表明酶催化的 CM 反应是焓驱动的。此外,我们观察到枯草芽孢杆菌的单功能 CM 比其混杂对应物更有效地催化此反应。过渡态反应途径的结构分析支持了这一点,从中我们确定了解释反应焓驱动性质以及两种酶之间效率差异的关键残基。
益生菌是活的微生物,如果以足够的量为宿主提供健康益处,例如乳酸细菌是革兰氏阳性生物,它们在生产和储存包含它们的产品的过程中可以承受不同的环境压力。本研究旨在评估从菠萝和水瓜中分离出的乳酸细菌(LAB)菌株的益生菌潜力。对评估中使用的材料进行了适当的灭菌,包括De-Man Rogosa&Sharpe Agar(MRS),兄弟夫人,通过条纹方法,营养琼脂和Mueller Hinton琼脂隔离实验室,使用Disc扩散方法进行抗生素敏感性测试。在168种细菌上对板数琼脂进行计数,根据其文化和生化特征,总共筛选了6种菌株。筛选果实的抗菌活性及其抗生素敏感性;这六个分离株表现出对革兰氏阳性和革兰氏阴性人病原体的抗菌行为(Proteus mirabilis,Escherichia Coli,Pseudomonas铜绿假单胞菌,枯草芽孢杆菌,枯草芽孢杆菌,金黄色葡萄球菌和金黄色葡萄球菌和Corynenebacteria spp。抗生素敏感性测试也有望,P1显示针对阿莫西克的31毫米。分子鉴定分析(16sRNA测序)表明,分离株是属于同一基团的不同物种,乳酸乳杆菌发酵乳杆菌,lactobacillus plantarum和weissella cibaria。最终的结果表明,从果实样品中分离出的细菌具有有趣的特性,并且有可能用作益生菌并制备功能性水果产物。
摘要这项研究的目的是对来自波兰北部的一个地理位置收获的蜂蜜的全基因组分析和评估细菌分离株的抗菌潜力。总共源自三个蜂蜜样品,总共获得了132个菌株,CFAM的抗菌活性(无细胞后培养培养基)用作菌株选择和详细基因组研究的标准。两个测试的分离株(SZA14和SZA16)被归类为帕拉酸芽孢杆菌,基于其ANI和系统发育分析的相关性,一个分离株(SZB3)为枯草芽孢杆菌。分离株SZA14和SZA16是从相同的蜂蜜样品中收获的,核苷酸同一性为98.96%。已经发现所有三个分离株都是不同抗菌化合物的潜在生产者。二次代谢产物基因组挖掘管道(抗石)鉴定了14个基因簇编码为非核糖体肽合成酶(NRP),Polyketide合酶(PKSS)和核糖体合成的核糖体合成和核糖体合成的,并且是经过转化的肽(Ripps),这些肽是新型替代品的替代品。Bagel4分析揭示了分离株SZA14和SZA16中有九个假定的基因簇(包括两个分离物中存在的六个类似的簇,编码肠球菌NKR-5-3B,Haloduracin-alpha,sonorensin,sonorensin,bottromycin and comx2,comx2,comx2,comx2,comx2,suloduracin-alloduracin- SZB3(能力因子,孢子杀伤因子,枯草脂蛋白A和乙酰肽)。这项研究的结果证实了蜂蜜衍生的芽孢杆菌属。菌株可以被认为是各种抗菌剂的潜在生产者。
沙质土壤中的Oselle种植面临着主要的挑战,例如水和养分保留率,对植物的生长和产量产生负面影响。这项研究旨在评估微生物接种剂的潜力,以提高缺乏营养的沙质土壤中的roselle生产力。使用八个微生物处理在埃及进行了一次现场实验:枯草芽孢杆菌,假单胞菌荧光症,胸膜胸膜螺旋体,菌根(Mycorrhize)(菌根)(菌根)真菌及其组合以及非启动控制。将微生物接种剂用作种子处理和土壤浸湿,以改善沙质土壤的生育能力。所有微生物接种剂都显着提高了新鲜和干燥的花萼产量,芽生长,种子产量以及整体生物质与对照。枯草芽孢杆菌在产量参数方面的增强最大。将芽孢杆菌,假单胞菌,胸膜和菌根结合起来,导致进一步的协同屈服提高了最高332%的控制。与对照植物相比,微生物接种还大幅增加了724%的氮和钾摄取和利用效率。的结果证明了微生物接种剂通过协同促进土壤生育能力和植物生长的协同促进,在营养不足的沙质土壤中显着提高了roselle的生产率和营养的巨大潜力。微生物接种可以为贫穷的沙质土壤中的罗斯尔栽培挑战提供可持续的解决方案。关键词:有益的微生物;营养利用效率;植物生长
摘要:由于牛奶乳清是一种丰富的乳制品副产品,并且对环境有重大威胁,因此其利用引起了极大的兴趣。这项研究比较了乳糖和乳酸(通过发酵)的乳糖和乳酸的价值(乳清的主要碳来源)。食品级细菌在发酵过程中释放的抗菌作用可以帮助提高食物的微生物安全性。丙酸 - 一种强的抗菌剂 - 主要是通过石化途径获得的,但对其在生物技术途径中的合成越来越兴趣。五株丙酸细菌(酸性核酸杆菌,酸性杆菌,环己丙己省丙糖酸,弗洛德尼丙肽杆菌,酸性核酸杆菌,Jensenii酸性杆菌,Jensenii和使用酸性的酸性酸杆菌的能力),并产生了酸性的酸性,并产生了有机酸酯的能力。碳源。在用食源性病原体研究期间,研究了选定的发酵液的抗菌效率:大肠杆菌,克雷伯氏菌肺炎,铜绿假单胞菌,铜绿假单胞菌,枯草芽孢杆菌,枯草菌和葡萄球菌aureus。结果证实,酸和生物量的产生对添加的碳源影响很大。测试的发酵液具有针对铜绿假单胞菌,枯草芽孢杆菌和金黄色葡萄球菌的强大抗小体活性。此外,抑制金黄色葡萄球菌和肺炎肺炎的抑制取决于产生的细菌素的活性。本文还讨论了通过酸性提高发酵物抗菌活性的可能性。
直接加热灭菌循环 – 140°C 下 120 分钟 – 确保消除每个培养箱表面的所有微生物和真菌孢子 (ANSI/AAMI/ISO 11134)。此声明已通过针对干热过程校准的枯草芽孢杆菌孢子悬浮液得到验证,因为这些孢子对干热灭菌具有最强的抵抗力,因此是推荐的指示生物(美国药典,第 1035 章)。在 140°C 下 120 分钟的灭菌循环后,施加到培养箱不同表面的所有孢子 – 腔壁(不锈钢)、门(玻璃)和门垫圈(钢化硅胶)都已可靠地消除。
ACL:三磷酸腺苷柠檬酸裂解酶; ANGPTL3:血管生成素样蛋白 3; Apo:载脂蛋白; CETP:胆固醇酯转运蛋白; CoA:辅酶 A; HDL:高密度脂蛋白; HMGCR:羟甲基戊二酰辅酶 A 还原酶; IDL:中密度脂蛋白; LDL:低密度脂蛋白; LPL:脂蛋白脂肪酶; mRNA:信使RNA; MTP:微粒体甘油三酯转运蛋白; PCSK9:前蛋白转化酶枯草溶菌素/kexin 9 型; R:受体; VLDL:极低密度脂蛋白。