• 2023 年 Royce W. Murray 青年研究员奖(SEAC 和 Pittcon)2022 年 4 月 • 2021 年 Alfred P. Sloan 研究员 2021 年 2 月 • 2021 年 NSF CAREER 奖 2021 年 1 月 • NIH NIGMS MIRA R35 杰出研究员奖 2020 年 9 月 • 福布斯 30 位 30 岁以下精英(科学类)2018 年 11 月 • NIH CORE 博士后奖学金 2017 年 6 月 • 医学技术 30 位 30 岁以下青年创新者 2016 年 7 月 • 代表;美国代表团参加林道诺贝尔奖获得者会议 2015 年 7 月 • 美国国家科学基金会研究生奖学金 2014 年 4 月 • 研究生院长著名奖学金 2014 年 6 月 • 国防科学和工程研究生奖学金,拒绝 2014 年 4 月 • 美国富布赖特奖学金获得者,拒绝与 AJ Bard 合作 2013 年 1 月 • 美国宇航局奖学金 – 艾姆斯研究中心 2013 年 5 月 • Mikal Sousa 纪念奖学金:鲍尔州立大学 2012 年 10 月 • 美国化学学会无机化学分部奖(无机化学) 2012 年 8 月 • 鲍尔州立大学院长顾问委员会成员 2012 年 8 月 • 总统奖学金:鲍尔州立大学;一半学费 2010 年 8 月 V. 参考书目和奖学金产品(链接到 Google Scholar) A.) 书籍和书籍章节
新的商业开发项目应使用符合 2006 年版 NFPA 1 表 H 的消防栓进行保护。要查看表 H,请访问:(http:///www.nashfire.org/prev/tableH51.htm) 项目工程师需要与消防局办公室会面讨论此项目。任何建筑物的任何部分都不得通过硬面道路距离消防栓超过 500 英尺。地铁条例 095-1541 第 1568.020B 节。所有消防部门通道的宽度不得小于 20 英尺,且垂直净空高度不得超过 13.6 英尺。所有长度超过 150 英尺的死胡同都需要直径为 100 英尺的转弯处,这包括临时转弯处。持续时间不超过一年的临时 T 型转弯处必须得到消防局办公室的批准。如果地面以上三层以上,则应安装 1 级立管系统。如果地面以下一层以上,则应安装 1 级立管系统。当需要将桥梁用作消防部门通道的一部分时,应根据国家认可的标准建造和维护桥梁。应在消防部门连接处 100 英尺范围内提供消防栓。在将任何可燃材料带入现场之前,应先将消防栓投入使用。
水是农业生产力的基本要求。在农业领域,传统能源发电会产生大量碳足迹,用于通过管井抽水。在过去的几十年里,向可再生资源的过渡转变不断增加,从而实现了环境脱碳,并被认为是发电的可行解决方案。为了协助并提供这种模式转变的路线图,拟议的研究通过对发展中国家四个独立站点的独立系统和电网连接系统进行比较分析,对灌溉系统进行了技术经济和环境分析。光伏系统与电网集成,可进行能源购买和销售 (PV + G (P + S)),被证明是最优配置,能源成本 (COE) 分别为 $0.056/kWh、$0.059/kWh、$0.061/kWh 和 $0.068/kWh,而净现值 (NPC) 分别为 $7,908、$20,186、$25,826 和 $34,487,使用寿命为 25 年。此外,还基于不确定变量(例如电网购电 (GPP) 和平均太阳辐射 (GHI))进行了敏感性分析,以检查系统的优化行为。环境分析结果表明,与传统能源相比,(PV + G (P + S)) 系统的碳影响相对较小。这种配置还可以通过将多余的太阳能光伏能源出售给电网来防止过量取水。此项研究为实体未来的优化提供了政策框架洞察。
摘要:肽核酸(PNA,具有肽骨架而非磷酸核糖骨架的核酸类似物)已成为反基因或反义治疗、剪接调节剂或基因编辑中的有前途的化学药剂。与 DNA 或 RNA 药剂相比,它们的主要优点是生化稳定性和整个骨架上没有负电荷,导致与它们杂交的链的静电相互作用可以忽略不计。因此,PNA 链与 DNA 或 RNA 链的杂交会导致更高的结合能和熔化温度。然而,缺乏天然转运体需要形成含 PNA 的嵌合体或制定纳米特定细胞递送方法。在这里,我们着手探索在诊断应用中使用基于 PNA 的成像剂所取得的进展,并重点介绍选定的发展和挑战。■ 简介
人工智能 (AI) 方法和技术已被用于解决建筑、工程和施工 (AEC) 行业中的各种工程问题,旨在提高整体生产力并优化整个项目生命周期(规划、设计、施工和维护)的决策。然而,由于缺乏对固有不确定性的全面理解(从根本上和数学上),许多人工智能应用面临着不同的限制和约束,因此人工智能的使用尚未达到令人满意的水平。它需要采取不同的措施来应对不同类型的不确定性,这些不确定性因不同类型的应用而异。因此,本文回顾了 5 种流行的人工智能算法,包括主成分分析、多层感知器、模糊逻辑、支持向量机和遗传算法;然后研究这些人工智能技术如何通过减轻不确定性来协助决策过程,同时实现预期的高效率。本文回顾了每一种相关的技术、数学解释、导致不确定性的原因分析,并总结了一套指南和一个应用框架,用于优化 AEC 应用的知情不确定性。这项工作将为根本理解铺平道路,进而为在 AEC 领域正确应用 AI 技术以实现更好的整体性能提供宝贵的参考。
a 巴勒莫大学生物、化学和制药科学与技术系,意大利巴勒莫 90123 b 麻省总医院,哈佛医学院,美国马萨诸塞州波士顿 02114 c 英国癌症研究中心剑桥中心,Hills Road,剑桥 CB2 0QQ,英国 d 新加坡国立大学杨潞龄医学院药理学系,新加坡 117600,新加坡 e 新加坡国立大学杨潞龄医学院新加坡国立大学癌症研究中心,新加坡 119077,新加坡 f 京都大学医学院,日本京都 g 古斯塔夫·鲁西癌症中心,儿童和青少年肿瘤学系,INSERM U1015,巴黎萨克雷大学,法国维尔瑞夫 h 实验治疗组,Vall d ′ Hebron 肿瘤研究所,西班牙巴塞罗那 i 卡迪夫大学和 Velindre 癌症中心,博物馆大道,卡迪夫 CF10 3AX,英国 j 南洋理工大学李光前医学院(LKCMedicine),实验医学大楼,636921,新加坡 k 新加坡国家癌症中心癌症遗传学服务(CGS),168583,新加坡 l 约翰霍普金斯大学公共卫生学院生物化学与分子生物学系,美国马里兰州巴尔的摩 m 安格利亚鲁斯金大学生命科学学院,英国剑桥 n 伦敦帝国理工学院癌症分部,英国伦敦汉默史密斯校区 o 新加坡国立大学杨潞龄医学院生理学系,117593,新加坡 p 新加坡国立大学杨潞龄医学院健康长寿转化计划,117456,新加坡 q 加利福尼亚大学格芬医学院肿瘤学系,美国加利福尼亚州洛杉矶 r 伦敦大学学院 MRC 分子细胞生物学实验室,英国伦敦 WC1E 6BT新加坡 A*STARTCentral 139955 私人有限公司
向分时电价 (ToU) 过渡已成为解决可再生能源系统安装增加所带来的电力系统挑战的一种有希望的解决方案。ToU 电价鼓励住宅采用电池储能系统 (BESS),通过在低价区间(例如中午)最大限度地利用能源存储来降低客户账单。但是,同时对 BESS 充电会影响负载的多样性,这可能导致违反配电网络约束。传统的网络管理采用保守的固定和静态功率限制,导致网络容量使用效率低下,因为它们没有考虑网络运行条件和 BESS 设施状态的变化。特别是,当部分 BESS 设施处于闲置状态时,这些方法不允许更高的进口限制。为了更好地将配电网容量分配给活跃的 BESS 设施(充电/放电),本研究引入了一个独立的存储运营商,通过采用时变和自适应功率限制来协调 BESS 控制操作。为此,提出了一种混合整数线性规划 (MILP) 算法,供存储运营商管理 BESS 设施,同时尊重网络约束和客户的期望账单。在每个时间步骤中,该算法根据预定义的线性函数决定活跃 BESS 设施的功率限制。这些函数是通过使用最佳功率流 (OPF) 离线生成的,以建立功率限制和活跃 BESS 数量之间的关系。在真实的约旦配电网中应用该算法证明了其有效性,与使用固定功率限制相比,它可以让更多的客户实现他们期望的账单。
超级电容器被公认为典型的储能设备,由于其高功率密度、快速充电能力和延长的循环寿命等令人印象深刻的特性,最近引起了人们的极大关注。然而,超级电容器有限的能量密度和低电容阻碍了其发展,限制了其在高性能储能设备中的进一步发展潜力[1,2]。电极材料对超级电容器电化学性能的深远影响已得到充分证实。常用的电极材料包括过渡金属氧化物、碳和导电聚合物。虽然碳材料表现出显着的循环稳定性,但它们通常产生相对较低的电容。该结果归因于存储机制,其涉及在电极表面产生双层电荷。相反,后两种电极材料通常比碳表现出更高的电容,这要归功于它们的存储机制,即在电极/电解质界面发生氧化还原反应[3]。因此,人们进行了广泛的研究,探索过渡金属氧化物在提高超级电容器的比电容和能量密度方面的潜力[4]。氧化铁(Fe 2 O 3)因其丰富的可用性、强大的理论能力和廉价的成本而引起了人们的极大兴趣[5]。然而,Fe 2 O 3 和许多其他金属一样,
已开展基础研究以了解固体表面附近振荡流的行为。这项工作最初是与西澳大利亚大学研究人员联合开展的一个项目的一部分,该项目由澳大利亚研究委员会全额资助。项目期间获得的结果提出了一种控制飞机机翼层流的新策略。目前,两名卡迪夫博士研究生正在跟进这项工作,资金来自工程和物理科学研究委员会。作为层流控制英国项目的一部分,还与伦敦帝国理工学院的研究人员合作研究了层流控制的其他方面。