这项研究旨在合成由Al 2 O 3和Ta 2 O 5制成的多层氧化物薄膜用于介电应用。由两个,四个或八个氧化物层制成的多层薄膜由物理蒸气沉积合成,特别是中频脉冲的直流电流磁子溅射。薄膜由化学计量的Al 2 O 3和Ta 2 O 5层制成,该层具有从扫描电子显微镜(SEM)获得的横截面图像中观察到的特定形态。Al 2 O 3层具有柱状结构,而TA 2 O 5层均匀致密。X射线衍射(XRD)特征表明,由于磁控溅射过程中使用的实验条件,尤其是底物的低温,这些氧化层的结晶度非常有限。
下列的PCR结果是使用小骨宿主耗尽微生物DNA试剂盒从唾液样品中提取DNA的结果,显示有效的宿主DNA耗竭和微生物DNA恢复。使用QPCR分析,据估计,对于这些样品的宿主DNA耗竭和细菌DNA恢复估计高于90%。图1:使用小骨宿主耗尽微生物DNA试剂盒从唾液样品中提取的DNA的PCR。a)使用人β-珠蛋白引物对宿主DNA检测。b)使用16S引物对细菌DNA检测。m:DNA标记;泳道1、3、5:提取的总DNA,没有执行宿主耗竭步骤;泳道2、4、6:宿主耗尽的(H. dep)DNA使用脊柱状宿主耗尽微生物DNA试剂盒提取;泳道7:PCR阴性对照。
Grado/Master/Tesis大学/PaisAño化学工程大学Castilla-la Mancha 1995-2000博士学博士学博士学博士学博士学位。5000个字符,包括空间)Amaya Romero于2000年6月在卡斯蒂拉·拉曼查(UCLM)的化学工程师毕业。在职业生涯的最后一年(1999-2000)中,她获得了龙舌兰酒研究小组的职业培训和教育促进奖学金(BOE 30/03/2000)。在2003年12月,她捍卫了自己的博士博士学位,该博士学位在由欧洲项目(CadeNox)资助的项目中的异质催化技术领域辩护。她的博物前研究的重点是开发新材料和异质性催化:与钛和铁的柱状粘土的合成和表征,可用作选择性催化消除NOX的催化剂。完成博士学位论文后,她的研究
脑计划细胞普查网络 (BICCN) 于 2023 年 12 月 13 日在《自然》杂志上发布了《全鼠脑图谱》出版包(https://www.nature.com/collections/fgihbeccbd,2024 年 5 月 5 日访问)。这项单细胞转录组、表观基因组和空间转录组综合工作将小鼠脑中存在的不同神经元细胞类型的数量更新为惊人的总数,略多于 5300 种,揭示了它们的分子多样性与它们的相对位置一致。我们在此提出的问题是:我们能否解释如此多不同类型的细胞是如何产生和定位的?这个问题与另一个问题相关:我们是否有形态模型允许在相对位置和神经元类型规范方面将这种程度的多样性相关联?令人惊讶的是,答案是可能的,而且几乎是肯定的。 BICCN 出版物隐含地使用了 Herrick 的传统柱状脑模型([ 1 ];图 1 a-d),可能是 Swanson 的修改版([ 2 , 3 ];图 1 e),或 Dong [ 4 ] 在 Allen 研究所的成年小鼠大脑图谱 [mouse.brain-map.org] 中使用的模型。该模型将端脑、间脑、中脑、后脑和脊髓视为主要分区(五个喙尾小泡;图 1 a)。在该模型中,Herrick 的最小单位由四个功能实体表示(脑干和脊髓中定义的躯体运动、内脏运动、内脏感觉和躯体感觉柱:Sm、Vm、Vs、Ss;图 1 a、d)。本文作者将它们外推到前脑(即间脑的 Eth、Dth、Vth、Hth;端脑的 Hi、Pir、Str、Se;图 1 a-c 中统一颜色的代码)。请注意,前脑柱可能执行与后脑不同的功能,尽管间脑在功能上被解释为脑干的延续。总的来说,这就构成了 5 个囊泡 × 4 个柱 = 20 个柱状单元,它们应该产生最近发现的 5300 种神经元类型(平均每柱 265 种细胞类型)。
摘要:胶体纳米晶体 (NC) 的自组装在固态材料的多尺度工程中具有巨大前景,通过这种技术,原子工程 NC 构件被排列成具有协同物理和化学性质的长程有序结构 超晶格 (SL)。迄今为止,报告主要集中在球形 NC 的单组分和二元系统上,产生的 SL 与已知的原子晶格同构。通过组合各种形状的 NC,可以预期获得远远超出已知晶格范围的更大结构空间。本文报道了空间稳定的 CsPbBr 3 纳米立方体 (5.3 纳米) 与圆盘状 LaF 3 NC (直径 9.2 - 28.4 纳米,厚度 1.6 纳米) 共组装成二元 SL 的过程,产生了具有 AB、AB 2 、AB 4 和 AB 6 化学计量的六柱状结构,这在之前和我们的参考实验中均未观察到,参考实验中使用由球体和圆盘组成的 NC 系统。本文使用填充密度计算合理化了立方体形状的这种惊人效果。此外,在尺寸相当的纳米立方体(8.6 纳米)和纳米盘(6.5 纳米、9.0 纳米、12.5 纳米)系统中,还观察到了其他非柱状结构,例如 ReO 3 型 SL,其特征是盘和立方体的紧密混合和面对面排列,纳米立方体的面心立方或简单立方亚晶格,以及每个晶格位置有两个或三个盘。层状和 ReO 3 型 SL 采用大型 8.6 纳米 CsPbBr 3 NC,表现出集体超快光发射 超荧光 的特征,源自激发态发射偶极子的相干耦合。关键词:胶体纳米晶体、纳米晶体形状、自组装、二元超晶格、电子显微镜、卤化铅钙钛矿、超荧光 I
摘要:有机分子晶体的长寿命室温磷光引起了广泛关注。持久发光取决于分子成分的电子特性,主要是 p 共轭给体-受体 (DA) 发色团,以及它们的分子堆积。本文开发了一种策略,通过设计两种异构分子荧光粉,结合并结合 D 和 A 单元之间的 s 共轭桥和用于 H 键导向超分子自组装的结构导向单元。计算强调了 s 共轭桥的两个自由度对发色团光学性质的关键作用。分子晶体的 RTP 量子产率高达 20%,寿命高达 520 毫秒。高效磷光材料的晶体结构证实了发射体存在前所未有的良好组织,形成由分子间 H 键稳定的 2D 矩形柱状超分子结构。
摘要:硬化性水肿是一种罕见的疾病,在临床上以无症状至发痒的脊柱状和硬皮病性爆发为特征,其组织学发现包括粘蛋白沉积和成纤维细胞增殖。它可以与单克隆伽马病有关。在怀疑硬化性水肿的所有情况下,必须排除甲状腺功能异常。尝试了几种治疗选择,包括化学疗法,糖皮质激素,沙利度胺,静脉免疫球蛋白和体外光疗。但是,没有得出令人满意的结论。所描述的情况代表了缺乏单克隆尖峰或M峰的硬化症性水肿。在我们的情况下,该患者在下颌运动,颈部运动的运动以及上肢的迁移率改善的症状上有显着改善,在治疗泼尼松龙和沙利度胺的一个月内。与硬化症相关的患者和丘疹病变的外观也有明显的改善。
采用定向能量沉积技术在用于硬面堆焊的热作工具钢基材上沉积了具有不同层数的冷作工具钢。本研究涉及了覆层工具钢中的缺陷和微观结构。在沉积区发现了包括孔隙和裂纹在内的缺陷,其数量随着沉积高度或层数的增加而增加。大的不规则孔隙主要位于沉积层的下部区域。此类孔隙的形成归因于合金元素在孔隙表面的偏析和热量输入不足。非平衡共晶微观结构是孔隙邻近区域的特征。另一方面,开裂往往发生在沉积层的上部。确定了导致开裂的两个重要因素。第一个是微观结构梯度,当从底部移动到顶部沉积层时,微观结构梯度从细胞状树枝状晶变为柱状树枝状晶。其次,根据Thermocalc软件的模拟,沉积的冷作工具钢表现出相对较大的凝固温度范围,从而对热裂纹具有很高的敏感性。
关于如何建造可持续月球基地的讨论自阿波罗计划之前就一直在进行,但尚未出现明确的答案。在本研究中,一种称为层次分析法 (AHP) 的决策支持工具用于缩小月球栖息地的最佳特征范围。简要介绍了 AHP 的数学基础及其批评。在确定了这些特征的核心设计特征和判断标准后,AHP 随后应用于月球栖息地。最终,我们确定充气栖息地在月球应用中应该略优于刚性栖息地,并且比其他栖息地概念更受青睐。混合结构可以在充气和刚性栖息地之间提供适当的折衷。AHP 还建议,使用 Vectran 约束层并使用柱状和隔间来部署栖息地比它们的替代方案更可取。此外,它还建议充气栖息地应该是圆柱形的,并加压至海平面压力。对这些结果进行了敏感性分析。通过这项研究,证明了如何使用 AHP 针对具有许多有影响的标准和潜在选项的复杂航空航天问题做出定量的、公正的决策。
经轧制加工的奥氏体不锈钢因其优异的机械性能和腐蚀性能而在技术应用中广泛应用。本研究调查了冷轧条件和快速凝固条件下 316L 奥氏体不锈钢的冷却速度、微观结构和性能的影响。冷轧加工钢的微观结构由奥氏体和低百分比的 δ 铁素体组成。对于快速凝固条件,随着冷却速度的降低,微观结构从柱状和针状树枝状晶粒演变为等轴树枝状晶粒,由于冷却速度高,不存在 δ 铁素体。此外,两种途径的热分析表明,在合成空气中快速凝固后,氧化动力学较慢。冷轧条件下的显微硬度低于快速凝固条件下的显微硬度,因为凝固条件下的微观结构更细化。考虑到点蚀电位,快速凝固条件区域 RS1 中的样品表现出最高的耐腐蚀性。冷轧条件下的钝化电流密度为5.72x10 -5 A/cm 2 ,而快速凝固条件下,区域RS1和RS2分别为2.24x10 -5 A/cm 2 和3.72x10 -6 A/cm 2 ,区域RS3在宽电位范围内未出现钝化区。