经轧制加工的奥氏体不锈钢因其优异的机械性能和腐蚀性能而在技术应用中广泛应用。本研究调查了冷轧条件和快速凝固条件下 316L 奥氏体不锈钢的冷却速度、微观结构和性能的影响。冷轧加工钢的微观结构由奥氏体和低百分比的 δ 铁素体组成。对于快速凝固条件,随着冷却速度的降低,微观结构从柱状和针状树枝状晶粒演变为等轴树枝状晶粒,由于冷却速度高,不存在 δ 铁素体。此外,两种途径的热分析表明,在合成空气中快速凝固后,氧化动力学较慢。冷轧条件下的显微硬度低于快速凝固条件下的显微硬度,因为凝固条件下的微观结构更细化。考虑到点蚀电位,快速凝固条件区域 RS1 中的样品表现出最高的耐腐蚀性。冷轧条件下的钝化电流密度为5.72x10 -5 A/cm 2 ,而快速凝固条件下,区域RS1和RS2分别为2.24x10 -5 A/cm 2 和3.72x10 -6 A/cm 2 ,区域RS3在宽电位范围内未出现钝化区。
数据管理是建筑物学习(ML)系统的最具挑战性的方面。ML系统可以在培训模型时读取大量历史数据,但是推理工作负载更加多样,具体取决于它是批处理还是在线ML系统。ML的功能存储最近已成为一个单个数据平台,用于管理整个ML生命周期中的ML数据,从功能工程到模型培训到推理。在本文中,我们将HOPSWORKS功能商店提供用于Ma-Chine学习,作为一个高度可用的平台,用于管理使用API支持柱状,面向行的和模拟搜索查询工作负载的API支持。我们介绍和解决由功能存储所解决的,由功能存储与功能重复使用,如何组织数据转换以及如何确保功能工程,模型培训和模型推理之间的正确和一致的数据。我们提出了为功能商店构建高性能查询服务的工程挑战,并展示了Hopsworks如何优于现有的云功能存储,用于培训和在线推理查询工作负载。
本研究旨在表征采用激光粉末定向能量沉积 (LP-DED) 和激光粉末床熔合 (L-PBF) 制造的 17-4 PH 不锈钢 (SS) 在非热处理和热处理条件下的微观结构和晶体织构。研究发现,非热处理的 LP-DED 17-4 PH SS 具有粗柱状铁素体晶粒,并以魏德曼铁素体晶粒为点缀,而 L-PBF 对应物具有非常细小且大多为等轴的铁素体晶粒以及板条马氏体。根据使用 Thermo-Calc 生成的相图,L-PBF 和 LP-DED 17-4 PH SS 样品获得了相同的应力释放 (SR) 温度。软件。CA-H1025 热处理之前的 SR 步骤导致织构弱化并略微细化了晶粒结构。未经热处理的L-PBF 17-4 PH SS样品具有强的立方体和γ纤维织构,而进行SR-CA-H1025热处理后织构转变为较弱的γ纤维组分。
柱状水蒸气相对于 1981-2010 年的平均值较高,海洋上空为 0.75 至 1.06 毫米,陆地上空为 0.58 至 0.94 毫米,但未达到 2016 年的创纪录值。在地表,海洋上空的比湿达到创纪录的高水平(0.23 至 0.41 g kg −1 ),陆地上空的比湿远高于平均值(0.14 至 0.36 g kg −1 )。相反,陆地上空的相对湿度远低于平均值(-1.28 至 -0.68 %rh),延续了长期下降趋势。与 2019 年相比,降水量有所增加,主要是受陆地值的影响,但很少有极端降水事件,再加上大部分陆地上的云量低于平均水平。与 2019 年相比,更多湖泊出现正水位异常,在东非,由于雨季潮湿,维多利亚湖的水位上升了一米多。土壤水分和陆地水储量的区域差异比往年更明显,东非和印度尤其潮湿。全球干旱面积在一年中的大部分时间里持续增加,在 10 月达到顶峰,根据帕尔默干旱报告,全球第三大陆地面积遭遇极端干旱
本报告详细介绍了密歇根州阿片类药物特遣队的行动,以实现惠特默州长在五年内将阿片类药物过量死亡减少50%的目标。在2020年,MDHHS和阿片类药物工作队在我们全州范围内的七个柱状阿片类药物战略计划中取得了进展,涵盖了预防,待遇,减少危害,刑事司法诉讼的人口,怀孕和育儿妇女人口,数据和股权计划。在2020年,我们看到了在2020年6月推出的密歇根州纳洛酮门户网站(Michigan Naloxone Portal)的关键成功,我们在全州分发了十万个工具包,我们扩大了基于急诊室的药物的访问,以治疗阿片类药物使用障碍障碍计划,并向州的所有角落提供了危害的危害运动,并在恢复了恢复的过程中,在恢复的角度进行了调整。,如数据所示,还有更多的工作要做。还必须实施解决预防,筛查和与阿片类药物滥用的干预措施的策略,也必须实施了解阿片类药物流行的范围更广泛的物质使用危机。
这项工作涉及不同热处理对定向能量沉积(DED)产生的TI-6AL-4V样品的影响。在1050℃下退火处理,然后进行不同的冷却速率,以允许对微结构的完整重结晶并去除柱状先验β晶粒,从而增加了材料的整体各向同性。还进行了540℃的氨基处理,以进一步的微结构稳定。微结构,纹理和机械性能。由于热处理,在等同的谷物形态中实现了巨大的微观结构。但是,检测到“谷物记忆”效应,导致晶粒尺寸沿样品高度增加。这种效果与沿Z上典型的DED技术的固有的先验β晶粒宽度变化相关。电子反向散射分析证明,热处理后优先分离截面的强度增加,这可能是由于样品从退火温度冷却时发生的晶体学变异选择机制。这种效应还受热处理和当ASPRINT标本之间的先验β晶粒大小而言的显着差异。总结一下,通过高于β-透射温度的热处理对材料进行完全均质化,这是具有挑战性的。实际上,数据表明制造过程授予的固有纹理相关的各向异性很难被消除。
摘要:电子束定向能量沉积(EB-DED)是一种很有前途的制备大尺寸、完全致密和近净成形金属部件的制造工艺。然而,对于钛合金的 EB-DED 工艺了解有限。在本研究中,通过 EB-DED 制备了近 α 高温钛合金 Ti60(Ti-5.8Al-4Sn-4Zr-0.7Nb-1.5Ta-0.4Si)。研究了制备的合金的化学成分、微观结构、拉伸性能(室温和 600 ◦ C)和蠕变行为,并将其与传统锻造层状和双峰对应物进行了比较。结果表明,Al 和 Sn 的平均蒸发损失分别为 10.28% 和 5.01%。成品合金的微观结构以粗柱状晶粒、层状 α 和在 α / β 界面处析出的椭圆硅化物为特征。在拉伸性能方面,无论是在室温还是在 600 ◦ C 下,垂直试样的强度都低于水平试样,但延展性却高于水平试样。此外,在 600 ◦ C 和 150 MPa 条件下测量的 EB-DED Ti60 合金在 100 小时的拉伸蠕变应变在原有和沉积后的 STA 条件下小于 0.15%,符合变形 Ti60 合金的标准要求。EB-DED Ti60 合金的抗蠕变性能优于其变形双峰合金。
摘要:本研究对先进生物材料合金快速凝固Co-Cr-Mo-C合金的微观组织和腐蚀性能进行了研究。采用快速凝固铸造方法不仅使受快速凝固影响较大的ε -HCP相的形成量发生了显著变化,而且电化学行为和凝固组织也发生了显著变化。本研究利用OM、SEM、EDS、XRD和动态电位仪研究了快速凝固Co-Cr-Mo-C合金。将钴合金锭放入充满氩气的感应炉中熔化,然后浇铸到V型砂型铜模中,制备快速凝固样品,并在不同的冷却速度下测量其性能。微观组织检查表明合金的结构主要由柱状树枝状组织组成,碳化物分布在一次和二次树枝状臂内,快速凝固将获得更细的树枝状组织以及改进的碳化物分布。这种结构将改善合金的腐蚀行为,并在以林格氏溶液作为电解质进行测试时降低其腐蚀速率。关键词:生物材料;钴铬合金;快速凝固;髋关节和膝关节植入物;腐蚀。
电弧增材制造 (WAAM) 是一种允许高效原位生产组件或再制造的工艺,它能够以更高的沉积速率和更低的成本进行生产。然而,WAAM 组件在沉积过程中会受到散热的影响,从而导致粗柱状晶粒生长,造成机械性能较差,限制工业应用。因此,本研究调查了将 Al 2 O 3 陶瓷粉末颗粒孕育剂引入 AWS A5.9 ER308LSi 不锈钢壁结构中的作用,通过细化晶粒工艺来提高机械性能。在沉积过程中,当温度降至 150ᵒC 时,手动将 Al 2 O 3 陶瓷粉末颗粒添加到每一层。为了弥补这些知识空白,我们进行了一系列完整的拉伸测试。制造了 WAAM 壁并分析了样品的微观结构。结果表明,WAAM SS308LSi 部件在沉积方向上的最高抗拉强度为 560 MPa,与未接种样品相比增加了 6%。这种改进是由于晶粒细化和异质成核的成功。该研究证明了该技术在 WAAM 部件制造或再制造过程中改善机械性能和微观结构的潜力。
摘要:通过直接沉积制备的双金属结构由于异种金属的组织和性能突然变化而存在缺陷。激光金属沉积(LMD)-电弧增材制造(WAAM)工艺可以通过沉积功能梯度材料(FGM)层(例如使用LMD的薄中间层)来缓解两种不同材料之间的缺陷,并可用于使用WAAM以较高的沉积速率和相对较低的成本制备双金属结构。本研究进行了LMD-WAAM工艺,并研究了制备的IN625-SUS304L双金属结构的微观组织。LMD-WAAM样品的FGM区的微观组织主要为细小的等轴枝晶形貌。相反,WAAM区构成了粗大的柱状枝晶形貌。LMD-WAAM样品的主要合金元素的成分随着沉积层高度而逐渐变化。 LMD-WAAM 样品的显微硬度随 Inconel 含量的增加而增加。对于 LMD-WAAM 样品,断裂发生在 25% IN625 和 0% IN625 之间的界面附近;对于 WAAM 样品,最终断裂发生在界面附近的 SUS304L 中。LMD-WAAM 样品的拉伸强度与激光功率成反比。结果表明,LMD-WAAM 样品的拉伸强度比仅使用 WAAM 制造的样品高 8%。