摘要:无人机(UAV-LS)的激光扫描数据为仅基于 UAV-LS 数据估算森林生长蓄积量(V)提供了新的机会。我们提出了一种测量树木属性的方法,并使用这些测量值估算 V,而无需使用现场数据进行校准。该方法包括五个步骤:i)使用 UAV-LS 数据,自动识别树冠并逐墙分割。ii) 从所有检测到的树冠中,取一个样本,其中胸高直径(DBH)可以通过 UAV-LS 数据中的视觉评估可靠地记录。iii) 另一个树冠样本是从 UAV 图像数据中可识别树种的树冠中取的。iv) 使用样本拟合 DBH 和树种模型,并应用于所有检测到的树冠。v) 使用现有的异速生长模型,利用预测的树种、DBH 和 UAV-LS 直接获得的高度来预测单株树的体积。该方法应用于 Riegl-VUX 数据集,该数据集的平均密度为 1130 个点 m − 2 和 3 厘米正射影像,该数据集是在 8.8 公顷的管理北方森林中获取的。汇总已识别树木的体积以估计地块、林分和森林级别的体积,并使用 58 个独立测量的田间地块进行验证。当将空间尺度从地块 (32.2%) 增加到林分 (27.1%) 和森林级别 (3.5%) 时,均方根偏差 ( RMSD %) 会降低。UAV-LS 估计的准确度因森林结构而异,在疏松林中准确度最高,在茂密的桦树或云杉林中准确度最低。在森林层面,基于 UAV-LS 数据的估计值完全在密集实地调查估计值的 95% 置信区间内,并且两个估计值具有相似的精度。虽然结果令人鼓舞,可以进一步在完全机载森林清查的背景下使用 UAV-LS,但未来的研究应该在各种森林类型和条件下证实我们的发现。
西特市市长布鲁斯·阿·哈雷尔(Bruce A.WHEREAS, urban trees, forests, and riparian ecosystems are critical green infrastructure that provide essential benefits by helping to cool our city during increasing heatwaves, lessen the urban heat island effect, mitigate stormwater runoff, sequester carbon, filter other pollutants, provide habitat for urban wildlife, improve physical and mental health for residents, and, in ways that are relevant to location and species, maintain cultural heritage and部落身份;鉴于,最近的研究表明,西雅图的树冠覆盖层在2016年至2021年之间有所减少,这是由我们城市公园和邻里住宅区内树冠的下降所领导的;鉴于西雅图的边缘化社区不成比例地缺乏树冠。数据显示,与主要富裕的白人社区相比,黑色,土著和有色人种(BIPOC)社区的覆盖率较低(在10%至20%之间)。贸易和气候变化继续促进新型物种引入本地生态系统和城市树冠。另外两个危险的害虫,铜桦树钻和海绵蛾,已经到达西雅图。该城市的特定底层地区包括雷尼尔谷,下杜瓦米什和乔治敦;而且,西雅图的目标是将其树冠的覆盖范围从2021年的28.1%增加到到2037年至少30%,并改善了树木的健康状况,并改善了整个城市的树木健康和公平的树木分配,以支持健康的社区并提高对气候变化的弹性;鉴于气候变化正在创造更热,干燥的环境。改变季节性降水会造成干旱压力,威胁着树木的健康,并使年轻树木难以建立;鉴于,在西雅图种植的许多树木既不是本地的,也不是适应气候的,但它们的寿命末期或某种结合的终结,使它们无法承受延长的夏季干旱;鉴于,在未来几十年中,引入疾病和害虫对该市的树冠构成了重大威胁。翡翠灰bore虫(Emerald Ash Borer)于2022年在波特兰发现了全国各地的灰树,并有可能消灭西雅图的整个灰树种群。虽然健康的树木可以更好地抵御害虫和疾病,但干旱压力的树木和更高的温度更容易受到损害和死亡的影响;和
在采伐和道路设计中使用激光雷达地形测量的诱惑和陷阱 Finn Krogstad 和 Peter Schiess 论文发表于 2004 年 6 月 13-16 日在不列颠哥伦比亚省温哥华举行的 IUFRO 3.06 山地森林作业联合会议和第 12 届国际山地伐木会议摘要机载激光测高 (Lidar) 可以生成极其详细和准确的地形图,即使在被森林冠层遮挡的地面上也是如此。详细的激光雷达地形图可以识别可能的着陆地点、难以穿越的溪流、不稳定的土壤、难以穿越的边坡和有用的长凳。这些细节可以减少现场时间,指导道路设计选择更好的方案,并提高我们对成本估算的信心。然而,激光雷达测绘偶尔也会失败,这些失败的表现方式将决定激光雷达的可靠性和对道路设计的价值。我们讨论了首次使用激光雷达对雷尼尔山南部的塔霍玛州立森林进行测绘的经验。这种详细的地形测绘被用于森林作业设计,例如着陆点和道路位置,作为基于流域的采伐和运输计划的一部分。随后对基于激光雷达的办公室设计进行了实地验证。这种 DEM 在森林工程设计中取得成功的关键在于能够(或缺乏)区分地面点覆盖充足或边缘的区域,从而导致测绘细节优秀或错误。我们讨论了各种方法,这些方法可以识别激光雷达地面点覆盖边缘的区域,从而形成测绘承包商应遵守的第一组激光雷达数据收集要求。看到树冠下的情况木材采伐和道路规划中反复出现的一个问题是,用于采伐的树木可能会遮挡必须堆放原木和修建道路的地面。规划中常用的地形图基于航空照片,其中我们现在想要采伐的林分遮挡了我们必须规划的地面。因此,得到的地形图是顶部树冠的地图,带有假定树高的偏移量。不幸的是,树冠并不完全贴合地面,在采伐和道路规划中至关重要的细微地形变化并没有反映在最终的树冠顶部。地形通常包括土壤不稳定、岩石露头和不平坦的地形,这些可能会给采伐和道路带来困难。树冠还会遮挡可以作为方便着陆和道路位置的天然土丘和长凳。因此,这些地形图只能作为设计的一般指南,操作的关键要素需要基于现场验证。机载激光地形扫描 (Lidar) 的最新发展使得即使在森林树冠下也可以进行详细的地形测绘。激光雷达的工作原理是拍摄数百万
在采伐和道路设计中使用激光雷达地形测量的诱惑和陷阱 Finn Krogstad 和 Peter Schiess 论文发表于 2004 年 6 月 13-16 日在不列颠哥伦比亚省温哥华举行的 IUFRO 3.06 山地森林作业联合会议和第 12 届国际山地伐木会议摘要机载激光测高 (Lidar) 可以生成极其详细和准确的地形图,即使在被森林冠层遮挡的地面上也是如此。详细的激光雷达地形图可以识别可能的着陆地点、难以穿越的溪流、不稳定的土壤、难以穿越的边坡和有用的长凳。这些细节可以减少现场时间,指导道路设计选择更好的方案,并提高我们对成本估算的信心。然而,激光雷达测绘偶尔也会失败,这些失败的表现方式将决定激光雷达的可靠性和对道路设计的价值。我们讨论了首次使用激光雷达对雷尼尔山南部的塔霍玛州立森林进行测绘的经验。这种详细的地形测绘被用于森林作业设计,例如着陆点和道路位置,作为基于流域的采伐和运输计划的一部分。随后对基于激光雷达的办公室设计进行了实地验证。这种 DEM 在森林工程设计中取得成功的关键在于能够(或缺乏)区分地面点覆盖充足或边缘的区域,从而导致测绘细节优秀或错误。我们讨论了各种方法,这些方法可以识别激光雷达地面点覆盖边缘的区域,从而形成测绘承包商应遵守的第一组激光雷达数据收集要求。看到树冠下的情况木材采伐和道路规划中反复出现的一个问题是,用于采伐的树木可能会遮挡必须堆放原木和修建道路的地面。规划中常用的地形图基于航空照片,其中我们现在想要采伐的林分遮挡了我们必须规划的地面。因此,得到的地形图是顶部树冠的地图,带有假定树高的偏移量。不幸的是,树冠并不完全贴合地面,在采伐和道路规划中至关重要的细微地形变化并没有反映在最终的树冠顶部。地形通常包括土壤不稳定、岩石露头和不平坦的地形,这些可能会给采伐和道路带来困难。树冠还会遮挡可以作为方便着陆和道路位置的天然土丘和长凳。因此,这些地形图只能作为设计的一般指南,操作的关键要素需要基于现场验证。机载激光地形扫描 (Lidar) 的最新发展使得即使在森林树冠下也可以进行详细的地形测绘。激光雷达的工作原理是拍摄数百万
SUBMITTED BY: Steve Robichaud Director, Planning and Chief Planner Planning and Economic Development Department SIGNATURE: RECOMMENDATION (a) That the “City of Hamilton Urban Forest Strategy”, attached as Appendix “A” to Report PED20173(a) be approved as a background study to the City of Hamilton Official Plan review and that staff be directed to integrate the actions identified in Appendix “D” as part of future Departmental workplans; (b)“汉密尔顿城市森林战略技术报告”,作为附录“ b”附带,以报告PED20173(a); (c)以“ D”附录附录的城市森林战略实施图,以报告ped20173(a); (d)到2050年,纽约市采用40%树冠的目标,并实现40%的树冠目标:
众所周知,可以通过机载激光扫描 (ALS) 获得单棵树的特征,例如树高、生物量和树冠面积,并且可以以 0.5 到 1.5 米的精度获得单棵树的高度。但是,尚未记录使用 ALS 测量单棵树生长的能力。本文报告了在北方森林区进行的多时相激光调查,表明可以以优于 0.5 米的精度测量单棵树的高度生长。介绍了自动提取树冠高度生长的方法。预计在分析全球森林变化和碳吸收、国家森林清单以及描述全球变暖对森林生长的影响的研究中,类似的方法对于参考测量也是可行的。
•随着最佳科学的发展,请在文档中包括遵循最佳科学的语言。•需要升级废水厂。当前的工厂位于洪水区。保护水质,请记住这一点,并希望将洪水区以外的新废水植物设置为提高弹性。•将来有树木条例的机会。理事会有兴趣不仅要依靠社区森林中的树冠,并确保在私人土地和公共行上的树冠。•认识公民科学家和社区成员在帮助管家自然地区的贡献的重要性。•小组同意生态系统列表通常是有道理的。提到的一个可能专注于Fidalgo湾水上储备区
NE-6.1维护一项全面的城市林业计划。NE-6.2 Encourage the planting and regular maintenance of street trees to enhance urban greenery.ne-6.3规定了重要的树木和树木架的保留,以及城市内的树木架的恢复。ne-6.4维护城市树基金,以保护树木繁茂的地区,恢复和增强本地树木,并提供教育和研究。NE-6.5在2050年到全市范围的40%树冠盖的目标。ne-6.6在评估树冠分布时,考虑了增加树冠和环境权益的机会。实施2022年通过第776号法令采用的2022年能源与气候变化工作计划的状态,2022年的三年能源与气候变化工作计划包括15个项目。当时注意到“这是一个积极的气候变化议程”。下表中描述了每个状态。2022 ECCC 3
以下所有幻灯片上使用的基本图是来自古代和濒临灭绝的森林地图。(https://canopyplanet.org/tools/forestmapper/app)。以下是显示磨坊周围的区域。根据树冠地图,我们从没有古老和濒危的森林中来源。