利用代码调制视觉诱发电位 (c-VEP) 形式的非周期性闪烁视觉刺激代表了反应性脑机接口 (rBCI) 领域的一项关键进步。c-VEP 方法的主要优势在于模型的训练与目标的数量和复杂性无关,这有助于减少校准时间。尽管如此,现有的 c-VEP 刺激设计可以在视觉用户体验方面进一步改进,同时实现更高的信噪比,同时缩短选择时间和校准过程。在本研究中,我们介绍了一种创新的代码 VEP 变体,称为“突发 c-VEP”。这种原创方法涉及以故意缓慢的速率呈现短暂的非周期性视觉闪光,通常每秒闪光两次到四次。这种设计背后的原理是利用初级视觉皮层对低级刺激特征的瞬时变化的敏感性来可靠地引发一系列独特的视觉诱发电位。与其他类型的快节奏代码序列相比,突发 c-VEP 表现出良好的特性,可以使用卷积神经网络 (CNN) 实现高按位解码性能,从而有可能在需要更少校准数据的情况下实现更快的选择时间。此外,我们的研究重点是通过减弱视觉刺激对比度和强度来降低 c-VEP 的感知显着性,以显著提高用户的视觉舒适度。通过涉及 12 名参与者的离线 4 类 c-VEP 协议测试了所提出的解决方案。按照因子设计,参与者被指示关注 c-VEP 目标,其模式(突发和最大长度序列)和幅度(100% 或 40% 幅度深度调制)在实验条件下被操纵。首先,全幅突发 c-VEP 序列表现出更高的准确度,范围从 90.5%(使用 17.6 秒的校准数据)到 95.6%(使用 52.8 秒的校准数据),而 m 序列的准确度为 71.4% 到 85.0%。两种代码的平均选择时间(1.5 秒)与之前研究报告相比更为有利。其次,我们的研究结果表明,降低刺激强度仅会稍微降低突发代码序列的准确度至 94.2%,同时会显着改善用户体验。总之,这些结果证明了所提出的突发代码在性能和可用性方面推进反应式 BCI 的巨大潜力。收集的数据集以及所提出的 CNN 架构实现均通过开放存取存储库共享。
利用代码调制视觉诱发电位 (c-VEP) 形式的非周期性闪烁视觉刺激代表了反应性脑机接口 (rBCI) 领域的一项关键进步。c-VEP 方法的主要优势在于模型的训练与目标的数量和复杂性无关,这有助于减少校准时间。尽管如此,现有的 c-VEP 刺激设计可以在视觉用户体验方面进一步改进,同时实现更高的信噪比,同时缩短选择时间和校准过程。在本研究中,我们介绍了一种创新的代码 VEP 变体,称为“突发 c-VEP”。这种原创方法涉及以故意缓慢的速率呈现短暂的非周期性视觉闪光,通常每秒闪光两次到四次。这种设计背后的原理是利用初级视觉皮层对低级刺激特征的瞬时变化的敏感性来可靠地引发一系列独特的视觉诱发电位。与其他类型的快节奏代码序列相比,突发 c-VEP 表现出良好的特性,可以使用卷积神经网络 (CNN) 实现高按位解码性能,从而有可能在需要更少校准数据的情况下实现更快的选择时间。此外,我们的研究重点是通过减弱视觉刺激对比度和强度来降低 c-VEP 的感知显着性,以显著提高用户的视觉舒适度。通过涉及 12 名参与者的离线 4 类 c-VEP 协议测试了所提出的解决方案。按照因子设计,参与者被指示关注 c-VEP 目标,其模式(突发和最大长度序列)和幅度(100% 或 40% 幅度深度调制)在实验条件下被操纵。首先,全幅突发 c-VEP 序列表现出更高的准确度,范围从 90.5%(使用 17.6 秒的校准数据)到 95.6%(使用 52.8 秒的校准数据),而 m 序列的准确度为 71.4% 到 85.0%。两种代码的平均选择时间(1.5 秒)与之前研究报告相比更为有利。其次,我们的研究结果表明,降低刺激强度仅会稍微降低突发代码序列的准确度至 94.2%,同时会显着改善用户体验。总之,这些结果证明了所提出的突发代码在性能和可用性方面推进反应式 BCI 的巨大潜力。收集的数据集以及所提出的 CNN 架构实现均通过开放存取存储库共享。
摘要 — 在过去的几年中,量子计算 (QC) 引起了计算机科学家的兴趣,因为它具有量子加速、解决 NP 难题的可能性以及实现更高的计算能力。然而,减轻每个量子设备内部噪声的影响是一个迫在眉睫的挑战。这些变化为研究校准参数对每个量子比特的个体特征的影响提供了新的机会。在本文中,我们基于校准数据和单个设备的特性研究了嘈杂的中型量子 (NISQ) 计算机的时间行为。具体来说,我们收集了过去两年 IBM-Q 机器的校准数据,并将量子误差鲁棒性与 IBM-Q 机器的处理器类型、量子拓扑和量子体积进行比较。索引术语 — 量子计算、量子特性、量子时间研究、量子误差
抽象目标。本研究旨在建立一个广义的转移学习框架,以通过利用跨域数据传输来提高稳态视觉诱发电位(SSVEP)基于脑部计算机界面(BCIS)的性能。方法。我们通过结合了最小二乘转换(LST)的转移学习来增强基于最新的模板的SSVEP解码,以利用跨多个域(会话,主题和脑电图蒙太奇)利用校准数据。主要结果。研究结果验证了LST在跨域传输现有数据时消除SSVEP的可变性的功效。此外,基于LST的方法比标准与任务相关的组件分析(TRCA)的方法和非第一个天真转移学习方法明显更高的SSVEP解码精度。意义。这项研究证明了基于LST的转移学习能够在各种情况下对其原理和行为进行深入研究,从而利用主题和/或设备的现有数据。当校准数据受到限制时,提出的框架显着提高了标准TRCA方法的SSVEP解码精度。其在校准减少方面的性能可以促进基于SSVEP的BCIS和进一步的实用应用。
MTS 拥有经过培训的现场服务机构,可执行您必要的现场传感器和系统校准。许多 MTS 现场校准服务均通过 ISO/IEC 17025 认证,并符合各种 ASTM 和 ISO 测试方法。我们的工程师配备了必要的校准设备,可通过 NIST 或其他公认的国家计量机构追溯,并利用我们专有的自动校准软件可靠地提供您的校准数据。签发校准报告和证书,显示校准前/校准后数据。
构建用于 EEG 解码的独立于受试者的深度学习模型面临着跨不同数据集、受试者和记录会话的强协变量转移的挑战。我们解决这一困难的方法是使用简单的统计技术以及具有更多表示能力的可训练方法明确对齐深度学习模型各个层的特征分布。这与基于协方差的对齐方法 [1] 类似,后者通常用于黎曼流形上下文 [2]。本文提出的方法在 NeurIPS 会议 2 举办的 2021 年 EEG 迁移学习基准 (BEETL) 竞赛 1 中荣获第一名。竞赛的第一项任务是睡眠阶段分类,这需要将在年轻受试者身上训练的模型转移到对多名年龄较大的受试者进行推理,而无需个性化的校准数据,因此需要独立于受试者的模型。第二项任务需要将在一个或多个源运动想象数据集的受试者上训练的模型转移到两个目标数据集上进行推理,为多个测试对象提供一小组个性化校准数据。
摘要 大型语言模型 (LLM) 开创了自然语言处理的新时代,但它们的庞大规模需要有效的压缩技术才能实用。尽管已经研究了许多模型压缩技术,但它们通常依赖于忽略多语言上下文的校准集,并导致低资源语言的准确性显著下降。本文介绍了一种用于多语言 LLM 压缩的新型校准数据采样方法多语言脑外科医生 (MBS)。MBS 通过按比例从各种语言中采样校准数据来克服现有方法以英语为中心的局限性。我们在 BLOOM 多语言 LLM 上进行的实验表明,MBS 提高了现有以英语为中心的压缩方法的性能,尤其是对于低资源语言。我们还揭示了压缩过程中语言交互的动态,表明语言在训练集中的比例越大,并且该语言与校准语言越相似,则该语言在压缩后保留的性能就越好。总之,MBS 提出了一种压缩多语言 LLM 的创新方法,解决了性能差异问题并提高了现有压缩技术的语言包容性。代码可在以下网址获取:https://github.com/X-LANCE/MBS 。
图1显示了构建的一般几何形状。激光焊缝在电线馈周周围有三个梁同心。挑战相关的测量值将包括残留应力/应变成分,在构建机器上拔掉后的底板偏转以及在构建过程中的底板温度。在构建过程中,激光功率保持恒定,但是进料速度和行进速度变化以产生良好的几何形状。激光校准数据,电线和底板材料组成,广泛的构建信息,包括编程的进料速率和旅行速度(G代码)以及一些热电偶数据。我们将不提供材料属性数据。
在所有情况下,目的都是生成典型的校准数据(见第 5.4 节)。因此,执行的数值模拟使用的压力值范围为 10 至 120MPa 的数据集,测量范围为 12 比 1。此外,对于许多数据集,没有指定 10 至 30MPa 之间的数据,即在测量范围的前 20% 左右,这是 ~P 方法实际使用中必须省略的。以施加载荷(类似压力)值的分数测量的随机质量误差(类似压力误差)的大小对应于平均约 1 百万分率 (ppm) 的误差,许多实验室可能会超过这个值。此外,施加载荷值加上系统误差的大小对应于 1 克的误差。