机器学习(ML)为公共和私营部门组织提供了广泛认可但复杂的机会,可以从数据中产生价值。一个关键要求是,组织必须通过与“机器知识”(即可用于为预测模型提供信息的数据)合并相关领域的专家的关键“领域知识”来找到发展新知识的方法。在本文中,我们认为了解产生这种知识的过程对于从策略上开发ML至关重要。在为这种理解做出贡献的努力中,我们通过对瑞典公共部门的两种案例进行探索性研究来研究从领域知识通过ML进行新知识的产生。这些发现揭示了三种机制的作用 - 称为合并,算法中介和归化 - 将领域知识与机器知识联系起来。这项研究贡献了与ML的Orga Nizational使用相关的知识生产理论,对其战略治理,特别是在公共部门中具有重要意义。
该溶液以 6x 格式提供,包含两种用于监测 DNA 迁移的示踪染料。这些染料在 2% TAE 琼脂糖凝胶上以大约 150 bp 和 800 bp 的距离迁移,或在 1% TAE 琼脂糖凝胶上以大约 500 bp 和 4,000 bp 的距离迁移。缓冲液还含有甘油,用于在加载后将 DNA 保留在孔底,并含有 EDTA 以抑制金属依赖性核酸酶的活性。
学习目标:成功完成此活动后,参与者应能够(1)了解视觉解释淀粉样蛋白,TAU和多巴胺能PET扫描的原则; (2)了解淀粉样蛋白,tau和多巴胺能PET在临床背景下的作用; (3)认识到可能在正确的视觉解释和淀粉样蛋白,TAU和多巴胺能PET扫描的成像方案中出现的潜在陷阱。财务披露:Burkett博士从GE Healthcare和北美放射学会获得了研究支持。Johnson博士是Telix和Novartis的顾问。 Dr. Lowe serves as a consultant for Bayer Schering Pharma, Piramal Life Sciences, Life Molecular Imaging, Eisai Inc., AVID Radiopharmaceuticals, Eli Lilly and Co., and Merck Research and receives research support from Siemens Molecular Imaging, AVID Radiopharmaceuticals, and the National Institutes of Health (National Institute on Aging, National Cancer Institute). 本文的作者表明,没有其他相关的关系可以被视为真正或明显的利益冲突。 cme信用:SNMMI已获得持续医学教育认证委员会(ACCME)的认可,以赞助医师继续教育。 SNMMI指定每本JNM继续教育文章,最多为2.0 AMA PRA类别1个学分。 医师应仅声称与他们参与活动的程度相称。 CE信用,SAM和其他信用类型,参与者可以通过SNMMI网站(http://www.snmmilearningcenter.org)访问此活动。Johnson博士是Telix和Novartis的顾问。Dr. Lowe serves as a consultant for Bayer Schering Pharma, Piramal Life Sciences, Life Molecular Imaging, Eisai Inc., AVID Radiopharmaceuticals, Eli Lilly and Co., and Merck Research and receives research support from Siemens Molecular Imaging, AVID Radiopharmaceuticals, and the National Institutes of Health (National Institute on Aging, National Cancer Institute).本文的作者表明,没有其他相关的关系可以被视为真正或明显的利益冲突。cme信用:SNMMI已获得持续医学教育认证委员会(ACCME)的认可,以赞助医师继续教育。SNMMI指定每本JNM继续教育文章,最多为2.0 AMA PRA类别1个学分。医师应仅声称与他们参与活动的程度相称。CE信用,SAM和其他信用类型,参与者可以通过SNMMI网站(http://www.snmmilearningcenter.org)访问此活动。
•开发和维护业务流程模型,业务交易模型,语义和内容的语法中性方式,以满足供应链和电子过程框架内的贸易和行业社区的要求。The supply chain and e-procurement covers the Purchasing, Material Management and Product development areas • approve based on the syntax neutral business transactions the corresponding UN/CEFACT syntax solutions provided by the UN/CEFACT Methodology and Technology group • encourage the active participation in SCM of interested user communities in Industry, Trade and Procurement, in accordance with UN/CEFACT membership criteria • maintain close relations with other UN/CEFACT groups as appropriate •促进和支持UN/CEFACT
如果 EMS JSC Belgrade 失去 AIB 正式会员资格,则将在 EMS JSC Belgrade 恢复正式会员资格之前,为塞尔维亚境内可再生能源电力的生产期签发国家 GO。会员资格批准后,将在 AIB 会员资格批准后为塞尔维亚境内可再生能源电力的生产期签发 EECS-GO。由于生产期签发时间表,可能会同时处理 EECS-GO 和国家 GO,但这些生产期不会重叠,因此不会签发重复的 GO。
摘要 - 电解图(EEG)的间/受主体内变异性使脑计算机界面(BCI)的实际使用很难。通常,BCI系统需要一个校准程序来获取主题/会话特定数据,以每次使用系统时调整模型。这个问题被认为是BCI的主要障碍,并克服它,基于域概括(DG)的方法最近出现了。本文的主要目的是重新考虑如何从DG任务的角度克服BCI的零校准问题。就现实情况而言,我们专注于创建一个脑电图分类框架,该框架可以直接在看不见的会话中应用,仅使用先前获得的多主题/ - 主题/ - 主题。因此,在本文中,我们通过休假一项验证测试了四个深度学习模型和四种DG算法。我们的实验表明,更深层次的模型在跨课程的概括性能中有效。此外,我们发现任何明确的DG算法都不优于经验风险最小化。最后,通过使用特定于特定数据进行调查的结果进行比较,我们发现特定于特定的数据可能会由于会议变异性而导致的,从而使未见的会话分类性能恶化。关键字 - 大脑 - 计算机接口;深度学习;电气图;运动图像;域概括
先进的高维测定技术,例如转录组学和表观基因组学32分析,在分子级生物学研究中提供了显着的深度和广度1。尽管有33项优势,这些技术通常只专注于特定的分子变化,34缺乏在细胞状态下观察变化的能力,涉及许多35个复杂和未知过程。为了在细胞系统水平上获取信息,已经开发出高36个吞吐量成像技术,以通过对染色的细胞成像2-4来产生细胞37表型的有用曲线。但是,这些基于图像的技术也有38个局限性,因为它们通常集中在具有已知关联或39个假设的生物过程上,从而限制了现有知识5中的发现5。此外,包括高维测定和基于图像的技术在内的传统40种方法通常受到其复杂性和高成本的约束。为了克服这些问题,已提出该技术称为细胞绘画(CP),已被提议作为解决方案。具体而言,CP技术43涉及染色八个细胞成分,具有六种非常便宜且易于染料的六个细胞成分,并在荧光显微镜6上五个通道中成像,这很易于操作,45