核糖体生物发生的摘要是癌症的标志,促进了对转化需求改变的适应性,这是肿瘤进展的必要方面的必要方面。在核糖体生物发生和癌症中,复杂的互相互相互动,强调了动态调节,由致癌信号传导路径策划了。研究研究核糖体的多卵形作用,Xtending be y ond蛋白f Actories中,将调节功能包括在mRNA翻译中。dy的核糖体生物发生不仅会阻碍对全球蛋白质产生和增殖的精确控制,还影响了诸如维持干细胞样性质和上皮间质转变等过程,导致癌症进展。干扰核糖体生物发生,尤其是通过RNA Pol I抑制作用,引起以核仁完整性丧失为标志的应力反应以及随后的G1细胞周期停滞或细胞死亡。这些发现表明,癌细胞可能依赖于RNA Pol I转录的增强,从而使核糖体RNA合成成为潜在的治疗脆弱性。<部门进一步探讨了靶向核糖体生物发生脆弱性,这是破坏全球核糖体生产的有前途的策略,为癌症治疗带来了治疗机会。
目的:结肠癌的化学疗法需要改善,以减轻与细胞毒性药物相关的严重不良反应(AE)。这项研究的目的是开发一种具有实用应用潜力的新型靶向药物输送系统(TDD)。方法:TDD是通过在白蛋白纳米颗粒(NP)中加载多西他赛(DTX)构建的,这些纳米颗粒(NPS)用核糖素靶向的适体(AS1411)进行了功能化。结果:TDD(APT-NPS-DTX)的平均大小为62 nm,负电荷为-31.2 mV。dtx从白蛋白NP中释放出典型的持续发行轮廓。通过表达核仁素的CT26结肠癌细胞与对照细胞相比,优先摄入适体引导的NP。体外细胞毒性研究表明,APT-NPS-DTX显着增强了CT26结肠癌细胞的杀戮。重要的是,与未靶向的药物递送相比,APT-NPS-DTX治疗sig sig sig sig可提高抗肿瘤功效,并延长了CT26含有小鼠的存活,而不会提高系统性毒性。结论:结果表明APT-NPS-DTX在靶向治疗结肠癌方面具有潜力。关键字:适体,纳米颗粒,结肠癌,针对药物输送系统
假嘧啶(ψ)是细胞RNA中最丰富的修饰之一。但是,其功能仍然难以捉摸,这主要是由于缺乏高度敏感和准确的检测方法。在这里,我们引入了2-溴丙烯酰胺辅助的环化测序(BAC),该测序(BACS)可以实现ψ-to-c转变,以在单基准分辨率下对ψ进行定量分析。BAC允许精确鉴定ψ位置,尤其是在密集修改的ψ区和连续的尿苷序列中。BAC检测到人rRNA和剪接小核RNA中的所有已知ψ位点,并生成了人类小核仁RNA和TRNA的定量ψ图。此外,BAC同时检测到腺苷对肌苷编辑位点和N 1-甲基腺苷。假氨酸合酶TRUB1,PUS7和PUS1的耗竭阐明了它们的靶标和序列基序。我们进一步确定了爱泼斯坦 - 巴尔病毒编码的小RNA Eber2中高度丰富的ψ114位点。出乎意料的是,将BAC应用于RNA病毒面板表明其病毒转录本或基因组中没有ψ,从而阐明了病毒家族的假胞苷化差异。
核干细胞素 ( NS ) 是一种优先在干细胞和癌细胞中表达的脊椎动物基因,它的作用是调节细胞周期进程、基因组稳定性和核糖体生物合成。NS 及其旁系同源基因 GNL3-like ( GNL3L ) 是在脊椎动物进化枝中从其直系同源基因 G 蛋白核仁 3 ( GNL3 ) 发生复制事件后出现的。然而,对无脊椎动物 GNL3 的研究有限。为了更好地了解 GNL3 基因的进化和功能,我们对水螅纲刺胞动物 Hydractinia symbiolongicarpus 进行了研究,这是一种群体水螅,在其整个生命周期中不断产生多能干细胞,并表现出令人印象深刻的再生能力。我们发现 Hydractinia GNL3 在干细胞和生殖系细胞中表达。GNL3 的敲低减少了不同年龄 Hydractinia 幼虫中有丝分裂和 S 期细胞的数量。通过 CRISPR/Cas9 对 Hydractinia GNL3 进行基因组编辑,导致菌落生长率降低、息肉再生能力受损、性腺形态缺陷和精子活力低下。总之,我们的研究表明 GNL3 是一种进化保守的干细胞和生殖系基因,参与 Hydractinia 的细胞增殖、动物生长、再生和有性生殖,并为 GNL3 和干细胞系统的进化提供了新的启示。
全球对化石资源耗竭及其环境影响的关注正在促使科学界从石油基于石油的转变为可持续化学物质。二苯甲酸(DPA)及其衍生物(DPE)在合成环氧树脂和多碳酸盐的合成中,成为基于生物和内分泌干扰素双酚A的基于生物的替代品[1,2]。进一步治疗后,DPA可以用作无异氰酸酯聚氨酯的前体[3-5]。此外,DPA在绘画配方以及抗菌棉织物中发现了一种添加剂[6,7]的添加剂[6,7] [8]。dpa通常是由无溶剂的冷凝液或在存在BrØNSTED酸催化剂的情况下通过苯酚和葡萄蛋白酸(或脱氟氨酸酯)的两个分子(或脱硫酸酯)的两个分子羟基烷基合成的。[9]脱甲酸和苯酚都可以源自木质核仁生物质[10-12]。葡萄干酸高度可用,廉价,被认为是美国能源部从生物质中衍生出的最有价值的化学物质之一[13,14]。苯酚的亲电芳族取代发生在Ortho - Para位置产生了两个立体异构体,P,P,P'-DPA具有高于O,P'-DPA的商业价值,因为它与Bisphenol非常相似,因此具有化学结构[15,16]。在许多应用中,葡萄干酸的烷基酯是
摘要:细胞活动在空间上由不同的细胞器组织。虽然一些结构已被充分描述,但许多细胞器的作用尚不清楚。分析生物分子组成是理解功能的关键,但在小型动态结构的背景下很难实现。光邻近标记已成为映射这些相互作用网络的强大工具,但在活细胞应用中,最大限度地提高催化剂定位并降低毒性仍然具有挑战性。在这里,我们公开了一种具有最小细胞毒性和脱靶结合的新型细胞内光催化剂,我们利用这种催化剂进行基于 HaloTag 的微环境映射 (μ Map),以在空间上对活细胞中的亚核凝聚物进行分类。我们还专门开发了一种新的以 RNA 为中心的工作流程 (μ Map-seq),以实现这些结构的并行转录组学和蛋白质组学分析。在验证了我们的方法的准确性后,我们生成了跨核仁、核层、卡哈尔体、副斑和 PML 体的空间图。这些结果为 RNA 代谢和基因调控提供了潜在的新见解,同时显著扩展了 μ Map 平台,以改进生物系统中的活细胞邻近标记。■ 简介
DNA:在细胞内发现的双链螺旋分子,其中包含生物体发育和功能所需的遗传信息。氢键连接嘌呤和嘧啶核苷酸碱基对,形成双螺旋结构。核苷酸:由DNA和RNA组成的分子,由含氮的核苷酸酶,磷酸基团和糖组成。DNA中的糖是脱氧核糖,而RNA中的糖为核糖。核碱酶:含氮分子,是核苷酸的组成部分。在DNA中,这些碱是腺嘌呤(a),胞嘧啶(C),鸟嘌呤(G)和胸腺素(T)。DNA碱基搭配在一起,连接了双螺旋的两个链。在DNA的正常情况下,腺嘌呤将与胸骨(A-T)配对,而胞嘧啶将与鸟嘌呤(G-C)搭配。在RNA中,胸腺氨酸被核碱尿嘧啶(U)取代。 核仁酶通常称为碱基。 嘌呤:在DNA和RNA中发现的两类核苷酸酶之一,其中包括腺嘌呤(a)和鸟嘌呤(G)。 嘧啶:在DNA和RNA中发现的两类核苷酸酶之一,其中包括胞嘧啶(C),胸腺嘧啶(T)和尿嘧啶(U)。 DNA聚合酶:在DNA复制过程中负责形成新的DNA副本的一类酶。 在DNA复制过程中,将一个双链DNA分子复制成两个相同的DNA分子。 此过程对于细胞分裂至关重要。 某些DNA聚合酶能够纠正错误,而另一些DNA聚合酶缺乏这种能力或显示误差校正减少。在RNA中,胸腺氨酸被核碱尿嘧啶(U)取代。核仁酶通常称为碱基。嘌呤:在DNA和RNA中发现的两类核苷酸酶之一,其中包括腺嘌呤(a)和鸟嘌呤(G)。嘧啶:在DNA和RNA中发现的两类核苷酸酶之一,其中包括胞嘧啶(C),胸腺嘧啶(T)和尿嘧啶(U)。DNA聚合酶:在DNA复制过程中负责形成新的DNA副本的一类酶。在DNA复制过程中,将一个双链DNA分子复制成两个相同的DNA分子。此过程对于细胞分裂至关重要。某些DNA聚合酶能够纠正错误,而另一些DNA聚合酶缺乏这种能力或显示误差校正减少。转录:将DNA转录为RNA的细胞过程。RNA:一种核酸,其中包含从DNA复制的信息。虽然RNA具有许多功能,但其中许多与在细胞内生产蛋白质有关。翻译:使用RNA携带的遗传信息的细胞过程用于与细胞传达如何将氨基酸连接在一起形成蛋白质(多肽)。RNA序列(通过核糖体)在三个核苷酸的片段中读取,称为密码子,这对应于一个氨基酸。单个核苷酸的变化可能会导致氨基酸链和随后的蛋白质形成的变化。蛋白质:蛋白质是由氨基酸组成的分子,是身体结构的基础。蛋白质在酶,细胞因子和其他活组织中发现。
核孔复合物(NPC)介导细胞核和细胞质之间的所有流量,是细胞中最稳定的蛋白质组件之一。有趣的是,发芽的酵母菌细胞具有两个NPC的两个变种,它们在存在或不存在核篮蛋白MLP1,MLP2和12 PML39的情况下有所不同。这些篮子蛋白的结合发生在NPC组装中很晚,而MLP阳性NPCS 13被排除在与核仁接壤的核包膜区域中。14在这里,我们使用重组诱导的TAG交换(RITE)来研究单个NPC中所有NPC 15子复合物的稳定性。我们表明,核篮蛋白MLP1,MLP2和16 PML39通过多个细胞分割循环与NPC保持稳定,并且MLP1/2是17负责将NPC从核方区域排除。此外,我们证明了NUP2的18结合还通过独立途径从该区域耗尽了MLP阴性NPC。我们19开发了一种在萌芽酵母中进行单个NPC跟踪的方法,并观察到在没有核篮成分的情况下,NPC在没有核篮成分的情况下表现出20个迁移率。我们的数据表明,NPCS 21在核上的分布受核篮蛋白与核内部的相互作用的控制。22
如何区分有益与微生物的有害相互作用?生物体使用多种方式来了解它们何时被感染。一个人不依赖于直接检测病原体,而是依赖于感染的后果。果蝇有一个惊人的例子,当真菌蛋白酶通过裂解内源性固定前体Spaetzle(2)来激活Toll信号通路(2)。此类检测系统是多种多样的。在秀丽隐杆线虫中,例如,顶端细胞外基质的破坏或核糖体,线粒体或核仁功能的扰动会通过或多或少理解的机制导致防御基因的表达(3,4)。并行,生物具有不同的模式识别受体(PRR),直接识别非自我。例如,在哺乳动物中,这可以通过类似收费的受体(TLR)。这些结合了一系列原型微生物部分,包括革兰氏阴性细菌的LPS。肽聚糖,另一种细菌细胞壁成分,由昆虫和点头样受体中的PGRP受体和哺乳动物中的TLR2检测到。奇怪的是,除了检测病毒双链RNA外,尽管进行了激烈的研究,但在秀丽隐杆线虫中仍缺乏直接病原体识别的例子(3)。Peterson等人的论文。在本期免疫力中,部分填充了该空隙,因为它描述了秀丽隐杆线虫中的新型PRR,秀丽隐杆线虫是一种检测特定有毒细菌代谢物的核激素受体(NHR)。
鳄梨 (Persea americana Mill.)是一种具有经济价值的植物,因为其果实脂肪酸含量高且风味独特。其脂肪酸含量,尤其是相对较高的不饱和脂肪酸含量,具有显著的健康益处。我们在此展示了西印度鳄梨的端粒到端粒无缝基因组组装 (841.6 Mb)。基因组包含 40 629 个预测的蛋白质编码基因。重复序列占基因组的 57.9%。值得注意的是,所有端粒、着丝粒和核仁组织区都包含在此基因组中。通过荧光原位杂交观察到这三个区域的片段。我们鉴定出 376 个潜在的抗病性相关核苷酸结合亮氨酸富集重复基因。这些基因通常聚集在染色体上,可能来自基因重复事件。五个 NLR 基因(Pa11g0262、Pa02g4855、Pa07g3139、Pa07g0383 和 Pa02g3196)在叶、茎和果实中高度表达,表明它们可能参与鳄梨在多种组织中的疾病反应。我们还鉴定出 128 个与脂肪酸生物合成相关的基因,并分析了它们在叶、茎和果实中的表达模式。Pa02g0113 编码 11 种介导 C18 不饱和脂肪酸合成的硬脂酰酰基载体蛋白去饱和酶之一,在叶子中的表达量高于在茎和果实中的表达量。这些发现提供了宝贵的见解,增强了我们对鳄梨脂肪酸生物合成的理解。