由于其独特的职责——拯救美国免受大规模杀伤性武器的危害,全球打击成为后 9/11 时代五角大楼进攻规划的一个重要的新重点:它是实施 2001 年核态势评估 (NPR) 中描述的新三位一体的基础;是美国战略司令部转变为美国军事规划中心的核心;也是 9/11 之后美国对其军事力量作用的看法在理论和政治上转变的体现。全球打击是对众议院和国防部长办公室 (OSD) 自 2001 年以来发布的具体指导的回应:•核态势评估(2001 年 12 月):通过阐明对部队和规划工具的要求奠定了基础,再次强调了针对拥有大规模杀伤性武器的地区对手的行动。 • 国家安全总统令 (NSPD) 14 (2002 年 6 月):根据《核态势评估》颁布新的核武器规划指南。 • 国家安全总统令 (NSPD) 17 (2002 年 9 月):公布了新的《打击大规模杀伤性武器国家战略》,作为打击核武器和其他大规模杀伤性武器的综合方法。重申美国将使用核武器——甚至是先发制人——对付任何使用大规模杀伤性武器对付美国、其海外军队以及盟友和盟友的人。呼吁混合使用核力量和常规力量。 • 美国国家安全战略 (2002 年 9 月):公开阐述了针对大规模杀伤性武器的先发制人原则,要求转变军事力量,以迅速而准确地“在流氓国家及其恐怖分子客户威胁或使用大规模杀伤性武器对付美国及其盟友和朋友之前阻止他们。” • 联合指挥计划,变更 2(2003 年 1 月):为战略司令部分配了四项新任务:全球打击、导弹防御、信息作战和全球 C4ISR。该指令将全球打击定义为“能够快速、远程、精确地执行动能(核和常规)和非动能(太空和信息作战元素)打击,以支持战区和国家目标。” • 核态势评估实施计划(2003 年 3 月):一份 26 页的清单,列出了 2001 年核态势评估中各军种被命令实施的具体项目。 • 核武器使用政策 (NUWEP)(2004 年 4 月):美国核计划将针对的国家的详细概述,包括各个打击选项(计划)的细分及其目标类别和目标。
量子物理学将我们对小世界的理解倒闭,就像拼图插入到位一样。出生于20世纪初期的突破,这项激进科学有助于我们掌握原子和亚原子尺度上发生的事情。它的思维弯曲原则吹走了古典思想和催生的创新,具有深厚的哲学意义。一个关键概念是波颗粒二元性:像电子这样的粒子可以是波和粒子。这种怪异是由阿尔伯特·爱因斯坦(Albert Einstein)弄清楚Light的粒子侧时首先发现的,而Louis de Broglie则表明,即使颗粒也可以像波浪一样行为。这模糊了粒子和量子水平的波之间的界线。量化是另一个至关重要的想法 - 某些物理价值(例如能量)仅在离散的块中。Max Planck首先提出了这个概念,当他通过建议能量出现在称为Quanta的数据包中,从而解决了黑体辐射问题。后来,Niels Bohr将其应用于原子,显示了电子如何在特定能级之间跳跃。海森伯格不确定性原则指出,我们不知道两种属性,例如位置和动力,同时具有无限的精度。这种破坏了古典的决定论,将固有的不确定性引入量子世界。这就像试图查明超速弹 - 您可以接近,但永远不会钉住它。最后,叠加让量子系统一次在多个状态下,直到我们对其进行测量。想象一下同时在两个地方做两件事!这种基本财产支撑着许多量子物理学对现实最令人惊讶的主张。(注意:原始文本是用偶尔的拼写错误重写以遵守指定概率的。)物理学家对微小颗粒在量子水平上的行为着迷,在量子水平上,发生了奇怪的现象和隧道的发生。量子力学表明这些颗粒存在于多个状态,直到观察到,并且测量行为本身会影响其性质。这是通过诸如双缝测试之类的实验证明的,在观察时粒子的行为不同。量子场理论试图在一个框架内统一所有基本力量,从而揭示了物质和能量之间的复杂舞蹈。**纠缠**纠缠是一种奇怪的现象,其中颗粒被连接起来,在巨大的距离上瞬间相互影响。这违反了时空的经典思想,并被称为“远处的怪异动作”。纠缠粒子用于加密和计算等量子技术,从而提出了有关信息传输限制的深刻问题。**观察者效应**观察者效应突出了观察与现实之间的相互作用。在实验中,当观察到与未观察到的,具有挑战性的经典观念时,粒子的行为可能会有所不同,即现实独立于测量。量子力学表明,观察行为本身在塑造量子系统的性质中起作用。**量子隧道**量子隧道允许粒子穿过由于波浪状的行为而在经典上是无法克服的障碍。这种现象是许多物理过程和技术(包括核融合和电子设备)的基础。**互补原理**互补原理指出,量子实体具有双重特性 - 例如波浪状和粒子样行为 - 无法同时观察到。这个概念调解了量子力学中明显的矛盾,强调了对多种观点完全理解量子现实的需求。**量子场理论**量子场理论将量子力学扩展到场,提供了描述自然基本力量的统一框架。通过探索物理和能量之间的复杂舞蹈,物理学家继续揭开量子世界的奥秘。量子场理论(QFT)是基于粒子物理学标准模型的理论框架,从基础领域的粒子行为提供了全面的解释。QFT揭示了这些场的激发粒子是如何通过交换携带力的粒子(例如电磁力的光子)和强核力量的振动而相互相互作用的。通过众多实验,QFT已实现了已得到广泛确认的精确预测。量子力学的原理,包括波粒二元性,能量的量化和不确定性原理,构成了现代物理的基础。对量子物理学的这种基本理解重塑了我们对微观世界的理解,揭示了一种以深远的相互联系,概率和丰富现象为特征的现实,这些现象挑战了古典直觉。这些概念驱动了技术创新,例如半导体,激光器和量子计算机。对量子力学的持续研究继续推出对宇宙基本本质的新见解,既推动了科学进步又推动哲学探究。探索量子原则不仅加深了我们对物理定律的理解,而且还扩大了人类的知识和技术能力。本课程是本科量子物理序列的第一部分,引入了量子力学的基本原理。它涵盖了一维和三维设置中量子物理学,波浪力学和Schrödinger方程的实验基础。材料探索了诸如潜在井,谐振传播,散射和中心电位之类的主题。本课程基于Zwiebach的教科书“掌握量子力学”(2022),该课程对该主题提供了全面的处理。演讲与亚当斯课程(2013)的覆盖深度和关注特定主题的不同之处。两个课程涵盖了类似的材料,但它们具有不同的观点和问题集。注意:我应用了“写为非母语说话者(NNE)”的重写方法来维持原始含义和音调,同时将语言调整为非本地人英语说话者的水平。
物理定律被蚀刻到对称的画布上,定义了动态系统中的不变模式。但是,当对称性破碎时,基本定律也是如此,通常会导致戏剧性的转变。大爆炸是一个很好的例子,在该例子中,高度对称的状态被称为“假真空”,突然过渡到了一个较低的对称性之一,释放了一种通货膨胀的级联,该级联伴随着我们的宇宙。在早期的宇宙中,极端的热量和能量导致所有力融合到一个实体中 - 由最高对称性的统一拉格朗日描述,但理论上的物理学家完全掌握了。随着宇宙的扩展和冷却,这种对称性被打破,将统一的力分成两个不同的组(重力和电核)。随后的冷却导致对称性进一步崩溃,随着电核力量分为强大的核力量和电能力量,标准模型的Lagrangian失去了更多的对称性。最终,在大爆炸之后的一秒钟仅一秒钟,宇宙就足够冷却了,以使统一的电子周力粉碎到电磁力和弱核力量中。在每个阶段,都会发生自发对称性破裂,从而导致物理不变,并出现新的行为。物理学家长期以来一直研究了自发对称性破坏的现象,范围从结晶和相变到诸如Yoichiro Nambu提出的下原子模型等例子,他们在2008年获得了这一概念的诺贝尔物理学奖。新的平衡位置随着箍旋转的速度而出现。结晶发生时,当温度降低时,具有高平均局部对称性的分子的流体会突然过渡,从而在相对位置施加了较低对称的限制并导致有序的晶体结构。即使是固体晶体也可以经历相变,因为一个对称性比另一种对称性在能量上更有利,从而导致其结构变化。在力学中,用参数缓慢进化的潜在函数可以从一个对称开始,并过渡到另一个较低的对称性,可能导致由该功能控制的机械系统的行为不连续变化。在复杂的系统和混乱理论中,当某些参数不断变化时,行为突然的转移很常见,导致分叉 - 对控制参数的持续变化而发生的突然变化。分叉以各种形式出现,每个形式都带有描述性名称,例如干草叉,倍增,霍普夫和折叠分叉。干草叉分叉是一个模范的情况,随着参数的连续变化(水平轴),稳定的固定点变得不稳定,从而产生了两个新的稳定固定点,同时 - 类似于三个衬托的干草叉的形状(超级挑剔的干草店双面双面双面双面双面布置)。可以在简单的机械模型中观察到这种确切的现象,这些模型说明了...当稳定的固定点突然分成多个固定点,一个不稳定,而其他稳定的稳定点时,就会发生对称性破裂。一个简单的机械模型显示此现象是在旋转圆圈上滑动的珠子。该概念也与Coleman-Weinberg的潜力有关。当箍缓慢旋转时,珠子在其底部的平衡周围振荡;但是,随着离心力更快,它会导致珠子摆动到一侧或另一侧,从而产生两个新的稳定固定点。当自旋速率超过临界阈值时,会发生过渡,从而导致自发对称性断裂和干草叉分叉。通过整合角加速度,我们可以获得系统的有效潜力,该系统自然会随着自旋速率的增加而表现出干草叉分叉。当干草叉的底部处于平衡状态时,振荡的固有频率基本平坦,频率为零。以下一定的过渡阈值,扩展加速度表达式揭示了固有频率。随着有效电势会变得更平整,自然振荡频率会降低,直到其在过渡自旋频率下消失为止。要找到这些新频率,请在新的平衡点附近扩展θ,这是一个谐波振荡器,具有角度频率,可以上升以匹配箍的自旋速率。这个过程与经历相变的铁电晶体中的自发对称性破裂相似。自发对称性破坏是一个过程,其中对称态的系统自发过渡到不对称状态。可以在运动方程或拉格朗日表现出对称性的系统中观察到这种现象,但是最低的能量真空溶液没有。当系统塌陷成这些真空溶液之一时,即使整个拉格朗日保留了对称性,对称性也会破坏该真空周围的扰动。自发对称性破坏需要在对称转换(例如翻译或旋转)下保持不变的物理定律。例如,如果在两个不同位置处的测量值具有相同的概率分布,则可观察到的可观察到的转换对称性。在自发的对称性破坏中,这种关系被破坏了,而潜在的物理定律保持对称。相反,当考虑具有不同概率分布的结果时,就会发生显式对称性破坏。缺乏旋转对称性的电场的引入明确打破了旋转对称性。的阶段,例如晶体和磁铁,可以通过自发对称性破坏来描述,但值得注意的例外包括拓扑阶段,例如分数量子霍尔效应。通常,当自发对称性破裂发生时,多个可观察的特性会同时改变。例如,当液体变为固体时,密度,可压缩性,热膨胀系数和比热可能会发生变化。考虑一个向上的圆顶,底部有一个槽。如果将球放在峰值上,则系统在其中心轴旋转下是对称的。但是,球可以通过滚入槽(最低能量点)来自发打破这种对称性。圆顶和球保留了他们的对称性,但是系统不再具有对称性。在理想化的相对论模型中,可以通过说明性标量场理论总结自发对称性破坏。相关的Lagrangian分为动力学和潜在术语:l = ∂μx∂μϕ -V(ϕ)。在这个潜在的术语中,对称性破裂发生。由Jeffrey Goldstone引起的潜力的一个示例由V(ϕ)= -5 | ϕ |^2 + | ϕ |^4给出。对于0和2π之间的任何真实θ,该电位具有由ϕ =√(5/2)E^(iθ)给出的无限数量的最小值(真空状态)。该系统还具有与φ= 0相对应的不稳定真空状态,该状态具有u(1)对称性。系统落入特定的稳定真空状态(构成θ的选择)后,该对称性似乎会丢失或“自发损坏”。该理论的基态打破了对称性,表明无质量的Nambu -Goldstone玻色子,代表了Lagrangian中原始对称性的记忆。[6] [7]对于铁磁材料,空间旋转是不变的。在居里温度下方,磁化点朝着一定方向,使残留的旋转对称性不间断。描述固体的定律在欧几里得组下是不变的,但由于位移和方向顺序参数,自发分解为空间组。一般相对论的洛伦兹对称性被FRW宇宙学模型中的平均4速度场打破了,类似于宇宙微波背景。电动模型在其温度下经历了相变,在该温度下,希格斯字段充当阶参数破坏量规对称性。超导体的集体场ψ可以打破电磁量规对称性。最初在旋转下最初对称的薄塑料杆在屈曲后变为不对称,但通过其旋转模式保留了圆柱对称性的特征,代表Nambu -Goldstone Boson。(1967)。无限平面上的均匀流体层的对称性是由于温度梯度而形成的对流。旋转圆形箍上的珠子最初将保持静止,但是随着旋转速度的增加,它将开始沿特定方向移动,说明了各种物理系统中对称性的自发破坏。在旋转箍的底部,有一个平衡点,重力电势是稳定的。随着箍旋转的速度,这一点变得不稳定,珠子跳到了中心两侧的两个新均衡之一。最初,系统是对称的,但是在传递临界速度之后,珠子沉降到这些新点之一,打破了对称性。两个气球实验表明,当两个气球最初均等地膨胀时,自发对称性破裂,然后随着空气从一个流向另一个气流而放气。在粒子物理学中,量规对称性预测,某些测量值在田间的任何位置都相同。例如,方程可能预测相等的夸克质量。但是,求解这些方程可以产生不同的解决方案,反映出对称性的崩溃。这种现象称为自发对称性破坏(SSB)。早期宇宙的不同区域的对称性可能有所不同,导致拓扑缺陷如域壁和宇宙弦。自发对称性破坏可以通过产生不必要的单脚架来为大统一理论(肠道)带来挑战。手性对称性破坏是SSB影响粒子物理中强相互作用的一个例子。量子染色体动力学的这种特性解释了核子和常见物质中的大部分质量,将光夸克转化为较重的成分。在此过程中,亲尼是近似的Nambu-Goldstone玻色子,其质量比核子的质量轻得多。手性对称性破裂是希格斯机构的原型,这是电动对称性破坏的基础。希格斯机制和自发对称性断裂是错综复杂的,特别是在仪表对称的领域,这实际上代表了描述对称性的冗余。这个概念在理解金属的超导性和粒子物理标准模型中粒子的起源方面起着至关重要的作用。然而,必须注意,由于Elitzur的定理指出,“自发对称性破坏”一词在某种程度上具有误导性。相反,在应用量规固定后,可以以类似于自发对称性破坏的方式破坏全局对称性。区分真实对称性和规格对称性的一个重要结果是,由于量规对称性的自发断裂对量规矢量场的描述,导致无质量的NAMBU-GOLDSTONE玻色子吸收。此过程提供了巨大的矢量场模式,类似于超导体中或在粒子物理学中观察到的媒介模式。在粒子物理的标准模型中,SU(2)×u(1)与电脉力相关的su(2)×u(1)仪表对称性的自发对称性破坏会为各种粒子产生质量,并区分电磁和弱力和弱力。W和Z玻色子是介导弱相互作用的基本颗粒,而光子介导电磁相互作用。在100 GEV以上的能量下,所有这些颗粒的行为都类似。然而,根据温伯格 - 萨拉姆理论,在较低的能量下,这种对称性被损坏,因此光子和巨大的W和z玻璃体出现。此外,费米子始终如一地发展质量。没有自发的对称性破坏,基本粒子相互作用的标准模型必须存在几个颗粒,但是某些粒子(W和Z玻璃体)然后将被预测是无质量的,与观察到的质量相矛盾。为解决这一点,希格斯机制增强了自发对称性破裂,以使这些颗粒质量质量。这也表明存在一个新粒子Higgs Boson,该粒子在2012年被检测到。金属中的超导性用作Higgs现象的凝结物类似物,其中一组电子对电子对自发打破了与光和电磁相关的U(1)量规对称性。动态对称性破坏(DSB)代表一种自发对称性破坏的一种特殊形式,与其理论描述相比,系统的基态具有降低对称性的特性。全局对称性的动态破坏是由于量子校正而不是在经典树级别而发生的一种自发对称性破坏。然而,动态规格对称性破裂更为复杂,不涉及不稳定的希格斯粒子,而是涉及系统的结合状态,提供了促进相变的不稳定场。物理学家Hill和Lindner发表了研究,该研究通过使用由顶式夸克制成的复合粒子探索了标准希格斯机制的替代方法。这个概念是复合HigGS模型的一部分,其中复合粒子充当希格斯玻色子。动态破裂通常与诸如夸克冷凝物等费米子冷凝物有关,而在超导性中,声子促进了对成对结合的电子,从而导致电磁仪表对称性破坏。大多数阶段可以通过自发的对称性破裂来解释,就像在所有翻译或磁体下都不是在特定方向方向取向的磁体的晶体。其他示例包括列液晶和拓扑排序的状态,例如分数量子厅液体。但是,也已知无法通过自发对称性破裂描述的系统,包括拓扑秩和自旋液体。这些状态保留了初始对称性,但具有不同的特征。铁磁性是自发对称性断裂的主要例子,在一定温度下,能量在磁化倒置下保持不变,但随着外部磁场接近零,能量会破裂。自发对称性阶段的特征是阶参数描述了打破所考虑的对称性的数量。这种崩溃不可避免地伴随着与阶参数的缓慢,长波长波动相关的无间隙nambu-goldstone模式,例如晶体中的声子或磁体中的自旋波。在一维系统中,发生对称性破坏。根据Mermin和Wagner的定理的说法,这些无质量的金石模式在恒定的速度下传播,并在有限温度下被热波动破坏。量子波动防止在零温度下的一维系统中大多数类型的连续对称性破裂,除了其顺序参数保守且没有量子波动的铁磁体。其他远程相互作用系统可能会破坏翻译和旋转对称性。对称的哈密顿量导致无限体积极限的手性构型破坏了镜面对称性。自发对称性破坏需要一个具有多种可能结果的系统,在采样时,它们是整体对称的,但在整体上是对称的,但在采样时会产生特定的不对称状态。这种“隐藏的对称性”具有至关重要的形式后果,并且与金石玻色子有关。在具有对称对称组的理论中,当组的一个元素不同而没有指定哪个成员时,就会发生自发对称性破裂。顺序参数概念是物理理论中的关键,其中对称性下的期望值不变表示有序的相位和断裂的对称性。除非涉及希格斯机制,否则这可能会导致无质量的金石玻色子。在1964年,物理学家Yoichiro Nambu和Makoto Kobayashi因其在亚原子物理学和对称性破坏方面的工作而获得了诺贝尔物理奖的一半。他们的发现揭示了强烈的相互作用如何打破对称结构,从而导致粒子(例如夸克和胶子)的产生。研究论文,例如Chen等。(2010)和Kohlstedt等。(2010)和Kohlstedt等。奖项的另一半因发现CP(指控和平等)对称性在薄弱的互动中被授予Toshihide Maskawa。这一发现对我们对粒子物理学的理解有影响,尤其是与希格斯机制有关。对称性破裂是物理学中的一个基本概念,描述了某些对称性如何在不同的物理系统中丢失或扭曲。它已经在各个领域进行了广泛的研究,包括量子力学,冷凝物质物理学和宇宙学。研究人员探索了对称性破坏了各种机制,例如自催化反应,灾难理论,手性对称性破坏和HIGGS机制。这些理论旨在解释对称性如何在不同的情况下破裂或扭曲,从而阐明了自然的基本定律。近年来,研究人员继续探索对称破坏的概念,并研究了诸如大统一理论,量规重力理论和宇宙弦之类的主题。对对称性破裂的研究仍然是研究的活跃领域,其驱动到其潜力揭示了对宇宙基础结构的新见解的潜力。在包括物理学在内的各个科学社区中,已经对自发对称性破坏的概念进行了广泛的研究。(2007)分别探讨了其对量子纠缠和手性的影响。诺贝尔物理学奖2008颁发给对该领域做出重大贡献的研究人员。史蒂文·温伯格(Steven Weinberg)等学者在诸如Cern Courier等出版物中的意义反映了其重要性。Englert-Brout-Higgs-Guralnik-Hagen-Kibble机制是自发对称性破坏的基本概念,该概念是Guralnik等人最初引入的。该理论已被广泛应用于量规理论,并且是众多研究的主题,包括在《国际现代物理学杂志》中发表的A.自发对称性破坏对我们对宇宙的理解具有深远的影响,其研究仍然是一个积极的研究领域。
1 C6F 那不勒斯参谋部行动和计划军官 2412 NOBC 9065 2 潜艇诺瓦参谋部潜艇战 2412 NOBC 9084 3 战略司令部奥马哈指挥中心行动军官 2412 NOBC 9060;奖项 AQD JS2 4 OPNAV N8 WASHDC 战略计划军官 / 潜艇战备 2412 NOBC 9086 5 CCSG-5 YOKO 参谋部潜艇战 2412 6 USWC 圣地亚哥 SDGO 主任综合 USW 理论与战术开发 2412 NOBC 9040 7 GRU7 YOKO 参谋部计划军官 2412 NOBC 9067 8 UWDC DET PEARL DET 主管军官 2412 NOBC 9073 9 COMNAVIFOR 诺福克作战系统副主任 2412 在 -1/+3 个月窗口之外可用 10 OPNAV N97 PNT 参谋部作战与计划军官2503 NOBC 9065 11 COMPACFLT MOC PEARL 参谋 潜艇作战与规划 2503 NOBC 9065 12 CCSG-8 NORVA 参谋 潜艇战 2503 13 CCSG-10 NORVA 参谋 潜艇战 2503 14 COMSUBLANT NORVA 参谋 战备军官 2503 O6 岗位 15 NWC 纽波特军事教员/讲师 2503 JPME-II 是先决条件 16 CSL NORVA 参谋 计划军官/CNO 联络官 2503 NOBC 9065 17 OPNAV N97 WASHDC 作战分析员 (SSBN INTEL) 2503 NOBC 9085 18 STRATCOM 奥马哈核目标瞄准官 2503 NOBC 9069; 奖项 AQD JS2 19 ONI WASHDC 海底作战主管 2503 NOBC 9670 20 ASN FMC WASHDC FMB 国会联络官 2504 NOBC 2410 21 GRU7 YOKO 参谋计划官 / 特别行动 2505 NOBC 9065 22 NRHQ WASHDC 线路储物柜官政策 2505 NOBC 9905; 奖项 SUBSPC 3130S 23 INDOPACOM PEARL 海事集成商 2505 NOBC 9065;奖项 AQDs JS2 和 VX2 24 GRU9 班戈海事行动副主管 2505 NOBC 9065 25 COMSUBLANT NORVA 执行助理 2505 NOBC 9930 26 RDSA ARLING 参谋行动和计划军官 2505 NOBC 9065 27 COMUSFORPAC PEARL 参谋行动军官 / MIW 主管 2505 NOBC 9065; 奖项 JOM 和 BZA 28 太空彼得森空军基地 COL SPR 联合战略计划和政策 2505 NOBC 9990; 奖项 AQD JS2 29 STRATCOM 奥马哈 J3 分部负责人 2505 NOBC 9077;奖项 AQD JS2 30 JCS ARLING 预算/国防资源经理 2505 NOBC 1025; 奖项 AQD JS2 31 JCS ARLING 作战军官/参谋潜艇战 2505 NOBC 9065; 奖项 AQD JS2 32 JCS ARLING 作战分析师/亚太分部负责人 2505 NOBC 9085, 奖项 AQD JS2 33 JCS ARLING 海事 SRO 经理 2505 NOBC 9085,奖项 AQD JS2 34 DTRA FT BEL 国际项目经理 2505 NOBC 9965;奖项 AQD JS2 和 AAN 35 CCSG-1 SDGO 参谋潜艇战 2505 36 USFFC NORVA JFMCC 战略部门主管 J37/J33 2506 NOBC 9086 37 UWDC SDGO 参谋反潜军官 2506 NOBC 9040;奖励 AQDs JPM & BA7 38 JCS ARLING 敏感侦察行动分局局长 2506 NOBC 9670;奖励 AQD JS2 39 USFFC NORFOLK JFMCC STRAT J3/J5N 副手 2506 NOBC 9086 40 PEO UWS WASHDC SSN(X) 经理/舰队战备联络官 2506 NOBC 2162;奖项 AQD AAN 41 JCS ARLING SRO BRANCH CHIEF 2506 NOBC 9670;奖项 AQD JS2 42 CCSG-2 NORVA 参谋潜艇战 2507 43 华盛顿特区学生(JPME II/硕士)2507 47 美国海军陆战队战争学院 QUANTIC 学生(JPME II/硕士)2507 48 STRATCOM 奥马哈首席 JCIDS 分支 2507 NOBC 9990;奖项 AQD JS2 49 JCS WASHDC 战略规划官 2507 NOBC 9990;奖励 AQD JS2 和 AAN 50 UWDC TAG GROTON OPS ANALYSIS DIV HEAD 2507 NOBC 9085;奖项 AQD BA3 51 CCSG-1 SDGO 潜艇战参谋 2507 52 CCSG-15 潜艇战参谋 2508 53 NNPTC 查尔斯顿核电学校执行官 2508 NOBC 9436 54 COMSUBLANT NORVA 人力资源管理官员 2508 NOBC 3320 55 USFFC NORVA 参谋计划官员/分部负责人 2508 NOBC 9067 & 9086 56 STRATCOM 奥马哈联合能力整合与发展系统 BH 2508 NOBC 9990;奖项 AQD JS2 57 STRATCOM 奥马哈 SSBN 检查/ASST IG 2508 NOBC 9065;奖励 AQD JS2 和 VX3 58 COMUSFORPAC PEARL 核力量动力军官 2508 NOBC 7968;奖项 AQD SN3 59 JCS ARLING STREET PLANS AND POLICY / POLE-MILE PLANNERS 2508 NOBC 9990;奖励 AQD JS2 60 联合部队 CMD 那不勒斯轮班主管/战斗上尉 2509 NOBC 9065;奖励 AQD JS2 61 NWC NEWPORT 军事教员/教员 2511 JPME-II 是先决条件 65 NWC NEWPORT 军事教员/教员 2512 JPME-II 是先决条件 66 NWC NEWPORT 军事教员/教员 Gapped -II 是先决条件; 67 PEO IWS WASHDC 作战系统 APB 开发,SUB FLT REP 有缺口 68 INSURV NORVA INSP TECH/WEP SYS SURV 有缺口 在 -1/+3 个月窗口之外可用SUB FLT REP 有缺口 在 -1/+3 个月窗口之外可用 68 INSURV NORVA INSP TECH/WEP SYS SURV 有缺口 在 -1/+3 个月窗口之外可用SUB FLT REP 有缺口 在 -1/+3 个月窗口之外可用 68 INSURV NORVA INSP TECH/WEP SYS SURV 有缺口 在 -1/+3 个月窗口之外可用